SUPPLEMENTARY MATERIAL

Expanding molecular modeling and design tools to non-natural sidechains

David Gfeller, Olivier Michielin, Vincent Zoete

1 Supplementary Figures

Figure S1: Comparison of rotamer probability predictions using probabilities inferred from frequencies along a MD trajectory (grey), computed from energy calculations in vacuo (blue) and with the FACTS solvent model (green). The blue bars show the cross-validation results after normalization (same data as in Figure 1).

Figure S2: Comparison of rotamer probability predictions using different solvent models. Grey and red bars show the correlation coefficients for rotamers computed with the FACTS solvent both before and after renormalization (same data as in Figure 1). Green, respectively blue, bars show the correlation coefficients for rotamers computed with GBMV2 before, respectively after, renormalization.

Figure S3: Cross-validation analysis for backbone independent rotamers. All sidechain satisfying the renormalization criteria display better correlations with experimental rotamer probabilities after renormalization. Grey bars show the correlation coefficients for probabilities inferred from MD trajectories. Red bars indicate the cross-validation results after renormalizing the rotamer probabilities by the average of experimental backbone independent first dihedral angle(s) rotamer probabilities.

Figure S4: Cross-validation results for bins restricted to the alpha helix and beta sheet regions of the Ramachandran plot. Grey bars show the correlation coefficients for probabilities inferred from MD trajectories. Red bars indicate the cross-validation results after renormalizing the rotamer probabilities.

Figure S5: Comparison between the predicted rotamer probabilities and the Dunbrack 2010 rotamer library. Grey bars show the correlation coefficients for probabilities inferred from MD trajectories. Red bars indicate the cross-validation results after renormalizing the rotamer probabilities with the experimental backbone dependent first dihedral angles rotamer probabilities of the Dunbrack 2010 rotamer library. Predicted rotamer probabilities are computed with the same bin definition for sidechain dihedral angles as in Dunbrack 2010 rotamer library.

2 Supplementary Tables

Table S1: List of all non-natural sidechains. The three- or four-letter code is shown in the first column. Colum 2 displays the sidechain fullname. The 2D-structure is shown in column 3. The exact definition of freely rotating dihedral angles used to define rotamer is given in column 4 (see data on http://www.swissnns.ch for the atom names in the pdb files). Column 5 indicates the corresponding kind of dihedral angles (used to define the bins, see Table S2). The last column shows the type of renormalization that was applied on the rotamer probabilities (see Table S3).

Code	Name	2D structure	Dihedral angles	Angle type	Renorm- alization scheme
004	Phenylglycine		N-CA-CB-CG1	13	
0A1	4-methoxy-beta- Phe		N-CA-CB-CG, CA-CB-CG-CD1, CE1-CZ-OH-CH	1, 3, 3	PHE
$0 \mathrm{AF}$	7-hydroxy-l- tryptophan	O NH ⁺ NH OH	N-CA-CB-CG, CA-CB-CG-CD1	1, 4	TRP
0BN	4-carbamimidoyl- l-phenylalanine	NH3 NH3 NH2 NH2	N-CA-CB-CG, CA-CB-CG-CD1	1, 3	PHE
200	4-chloro- Phenylalanine		N-CA-CB-CG, CA-CB-CG-CD1	1, 3	PHE
26P	2-amino-6- oxopimelic acid	0, , , , , , , , , , , , , , , , , , ,	N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-CE, CG-CD-CE-CZ	$ \begin{array}{c} 1, 1, 1, \\ 9 \end{array} $	Chi1,Chi2
2AG	2-Allyl-glycine		N-CA-CB-CG, CA-CB-CG-CD	1, 1	Chi1

Code	Name	2D structure	Dihedral angles	Angle type	Renorm- alization scheme
2AS	3-methyl-aspartic acid		N-CA-CB-CG1, CA-CB-CG1-OD1	1, 2	
2FM	s-(difluoromethyl)- homocysteine		N-CA-CB-CG, CA-CB-CG-SD, CB-CG-SD-CE, CG-SD-CE-FZ1	1, 1, 1, 1	MET
2HF	2-fluoro-l-histidine (NE2-ND1)		N-CA-CB-CG, CA-CB-CG-ND1	1, 5	HIS
2HF1	2-fluoro-l-histidine (ND1)		N-CA-CB-CG, CA-CB-CG-ND1	1, 5	HIS
2HF2	2-fluoro-l-histidine (NE2)		N-CA-CB-CG, CA-CB-CG-ND1	1, 5	HIS
2NP	l-2-amino-6- methylene-pimelic acid	O CH2 O.	N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-CE, CG-CD-CE-CZ1	1, 1, 1, 9	Chi1,Chi2
32T	(s)-2-amino-3- (4h-thieno[3,2- b]-pyrrol-6-yl)- propionic acid	NH ³ INH S	N-CA-CB-CG, CA-CB-CG-CD1	1, 4	TRP
3CF	3-cyano- phenylalanine	NHS O	N-CA-CB-CG, CA-CB-CG-CD1	1, 12	PHE asym- metric
3FG	(2s)-amino(3,5- dihydroxyphenyl)- ethanoic acid	OH OH	N-CA-CB-CG1	13	
3GL	4-hydroxy- glutamic-acid		N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-OE1	1, 1, 2	Chi1

Code	Name	2D structure	Dihedral angles	Angle type	Renorm- alization scheme
3MY	3-Chloro-tyrosine		N-CA-CB-CG, CA-CB-CG-CD1	1, 12	PHE asym- metric
4BF	4-Bromo- phenylalanine	O NH3 Br	N-CA-CB-CG, CA-CB-CG-CD1	1, 3	PHE
4CF	4-cyano- phenylalanine	NH3 N	N-CA-CB-CG, CA-CB-CG-CD1	1, 3	PHE
4CY	nitrilo-l- methionine	NH ⁺ or or	N-CA-CB-CG, CA-CB-CG-SD, CB-CG-SD-CE	1, 1, 1	MET
4FW	4-fluoro- tryptophane	NH [*] O F	N-CA-CB-CG, CA-CB-CG-CD1	1, 4	TRP
4HMP	4-hydroxymethyl- phenylalanine		N-CA-CB-CG, CA-CB-CG-CD1, CE1-CZ-CH-OJ	1, 3, 9	PHE
4HT	4-hydroxy- tryptophan	NH ³ O HO	N-CA-CB-CG, CA-CB-CG-CD1	1, 4	TRP
4IN	4-amino-l- tryptophan	NH ³ O H ₂ N	N-CA-CB-CG, CA-CB-CG-CD1	1, 4	TRP
4PH	4-methyl- phenylalanine	O CH3	N-CA-CB-CG, CA-CB-CG-CD1	1, 3	PHE
6CL	6-carboxylysine		N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-CE, CG-CD-CE-CZ, CD-CE-CZ-OH1	1, 1, 1, 1, 1, 1, 1, 2	Chi1,Chi2

Code	Name	2D structure	Dihedral angles	Angle type	Renorm- alization scheme
6CW	6-chloro-l- tryptophan	NH ⁵ NH	N-CA-CB-CG, CA-CB-CG-CD1	1, 4	TRP
AA4	2-amino-5- hydroxypentanoic acid	O O O	N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-OE	1, 1, 1	Chi1,Chi2
ABA	2-Aminobutyric acid	O CH3	N-CA-CB-CG	1	Chi1
ACZ	cis-amiclenomycin		N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-CE1	1, 1, 1	Chi1,Chi2
ADAM	Adamanthane	O H J Manuar Human	N-CA-CB-CG, CA-CB-CG-CD1	1, 1	Chi1
AGM	5-methyl-arginine		N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-NE1, CG-CD-NE1-CZ	1, 1, 1, 1	Chi1,Chi2
AHB	beta- hydroxyasparagine		N-CA-CB-CG, CA-CB-CG-OD1	1, 6	
AHP	2-Aminoheptanoic acid	о с	N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-CE, CG-CD-CE-CZ	1, 1, 1, 1	Chi1,Chi2
ALC	3-cyclohexyl- alanine		N-CA-CB-CG, CA-CB-CG-CD1	1, 1	Chi1
ALN	1-Naphthalene	NH ⁺	N-CA-CB-CG, CA-CB-CG-CD1	1, 12	PHE asym- metric

Code	Name	2D structure	Dihedral angles	Angle type	Renorm- alization scheme
ALO	Allo-threonine	OF OH	N-CA-CB-OG1	1	
ANTH	3-(9-anthryl)- alanine		N-CA-CB-CG, CA-CB-CG-CD1	1, 3	PHE
APD	3-Methyl- phenylalanine	OT CH3	N-CA-CB-CG, CA-CB-CG-CD1	1, 12	PHE asym- metric
APM	m-amidinophenyl- 3-alanine		N-CA-CB-CG, CA-CB-CG-CD1	1, 12	PHE asym- metric
ARO	c-gamma-hydroxy arginine		N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-NE, CG-CD-NE-CZ	1, 1, 1, 1	Chi1
AS2	(2r)-2-amino- 4-oxobutanoic acid	°, , , , , , , , , , , , , , , , , , ,	N-CA-CB-CG, CA-CB-CG-OG	1, 8	Chi1
AZDA	azido-alanine		N-CA-CB-NG, CA-CB-NG-ND	1, 1	Chi1
BB8	Phenylserine		N-CA-CB-CG1, CA-CB-CG1-CD1	1, 3	
BCS	benzylcysteine	NH ⁺ ₃ O	N-CA-CB-SG, CA-CB-SG-CD, CB-SG-CD-CE, SG-CD-CE-CZ1	1, 1, 1, 3	Chi1
BHD	beta- hydroxyaspartic acid	NH ⁺ ₃ O O OH O-	N-CA-CB-CG, CA-CB-CG-OD1	1, 2	

Code	Name	2D structure	Dihedral angles	Angle type	Renorm- alization scheme
BIF	biphenylalanine		N-CA-CB-CG, CA-CB-CG-CD1, CE1-CZ-C12-C13	1, 3, 10	PHE asym- metric
BIU	5-bromo-l- isoleucine	O HIS O Br	N-CA-CB-CG1, CA-CB-CG1-CD, CB-CG1-CD-BR	1, 1, 1	
BTH3	3-(3- benzothienyl)- alanine	NH ³ C	N-CA-CB-CG, CA-CB-CG-CD1	1, 4	TRP
BTR	6-bromo- tryptophan	NH ³ O	N-CA-CB-CG, CA-CB-CG-CD1	1, 4	TRP
BUG	Tertleucine		N-CA-CB-CG1	15	
C2N	3-chloro-d-alanine		N-CA-CB-CL	1	Chi1
CAN	canaline	O NH2	N-CA-CB-CG, CA-CB-CG-OD, CB-CG-OD-NE	1, 1, 1	Chi1
CCS	carboxymethylated cysteine		N-CA-CB-SG, CA-CB-SG-CD, CB-SG-CD-CE, SG-CD-CE-OZ1	1, 1, 1, 2	Chi1
CHG	Cyclohexylglycine		N-CA-CB-CG1	1	
СНР	3-chloro-4- hydroxy- phenylglycine	OT CI	N-CA-CB-CG1	14	

Code	Name	2D structure	Dihedral angles	Angle type	Renorm- alization scheme
CIR	Citrulline		N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-NE, CG-CD-NE-CZ	1, 1, 1, 1	Chi1,Chi2
CNP2	2-cyano- phenylalanine		N-CA-CB-CG, CA-CB-CG-CD1	1, 12	Chi1
CP24	2,4-chloro- phenylalanine		N-CA-CB-CG, CA-CB-CG-CD1	1, 12	Chi1
CP34	3,4-chloro- phenylalanine	NH ⁺ ₃ Cl	N-CA-CB-CG, CA-CB-CG-CD1	1, 12	PHE asym- metric
CPA3	3-Cyclopentyl- alanine	0,	N-CA-CB-CG, CA-CB-CG-CD1	1, 1	Chi1
CPG2	2-Chloro- phenylglycine		N-CA-CB-CG1	14	
CPG3	3-Chloro- phenylglycine		N-CA-CB-CG1	14	
CPG4	4-Chloro- phenylglycine		N-CA-CB-CG1	13	
CPH2	2-chloro- Phenylalanine		N-CA-CB-CG, CA-CB-CG-CD1	1, 12	Chi1
CSA	s-acetonylcysteine		N-CA-CB-SG, CA-CB-SG-CD, CB-SG-CD-CE, SG-CD-CE-CZ	1, 1, 1, 1	Chi1

Code	Name	2D structure	Dihedral angles	Angle type	Renorm- alization scheme
CTE	7-chloro- tryptophan	NH ³ O	N-CA-CB-CG, CA-CB-CG-CD1	1, 4	TRP
СТН	4-chloro-threonine		N-CA-CB-CG2, CA-CB-CG2-CL2	1, 1	
D4P	4-Hydroxy- phenylglycine		N-CA-CB-CG1	13	
DAB	Diaminobutyric acid		N-CA-CB-CG, CA-CB-CG-ND	1, 1	Chi1
DAH	3,4-Dihydroxy- phenylalanine	NH ⁺ OH OH	N-CA-CB-CG, CA-CB-CG-CD1	1, 12	PHE asym- metric
DBY	3,5 dibromotyro- sine	NH ¹ ₃ Or Or	N-CA-CB-CG, CA-CB-CG-CD1	1, 3	PHE
DDZ	3,3-dihydroxy l-alanine		N-CA-CB-OG1	1	
DILE	Diethylalanine	OT CH3	N-CA-CB-CG1, CA-CB-CG1-CD1, CA-CB-CG2-CD2	1, 1, 1	
DIPH	di-phenylalanine		N-CA-CB-CG1, CA-CB-CG1-CD1, CA-CB-CG3-CD3	1, 3, 3	
DMK	3,3-dimethyl aspartic acid		N-CA-CB-CG1, CA-CB-CG1-OD1	1, 2	

Code	Name	2D structure	Dihedral angles	Angle type	Renorm- alization scheme
DMP3	Dimethyl- phenylalanine	O CH3	N-CA-CB-CG, CA-CB-CG-CD1, CD2-CE2-CH-CJ	1, 12, 12	PHE asym- metric
DPP	2,3- Diaminopropanoic acid	O NH3 O NH3	N-CA-CB-NG	1	
ESC	2-amino-4-ethyl sulfanyl butyric acid	O CH ₃	N-CA-CB-CG, CA-CB-CG-SD, CB-CG-SD-CE, CG-SD-CE-CZ	1, 1, 1, 1	MET
F2F	3,4-Difluoro- phenylalanine	NH ⁺ O O	N-CA-CB-CG, CA-CB-CG-CD1	1, 12	PHE asym- metric
FCL	3-chloro- Phenylalanine	NH ⁺ ₃ Or	N-CA-CB-CG, CA-CB-CG-CD1	1, 12	PHE asym- metric
FGA4	4-Fluoro-glutamic acid		N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-OE1	1, 1, 2	Chi1
FGL	2-amino- propanedioic acid	0, NH ⁺ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	N-CA-CB-OG1	2	
FLA	Trifluoro-alanine		N-CA-CB-FG1	15	
FPG2	2-Fluoro- phenylglycine		N-CA-CB-CG1	14	
FPG3	3-Fluoro- phenylglycine		N-CA-CB-CG1	14	

Code	Name	2D structure	Dihedral angles	Angle type	Renorm- alization scheme
FPG4	4-Fluoro- phenylglycine		N-CA-CB-CG1	13	
FPH2	2-Fluoro- Phenylalanine	O F	N-CA-CB-CG, CA-CB-CG-CD1	1, 12	Chi1
FPH3	3-Fluoro- Phenylalanine	NH ⁺ ₃	N-CA-CB-CG, CA-CB-CG-CD1	1, 12	PHE asym- metric
FT6	6-fluoro-l- tryptophan	NH [*]	N-CA-CB-CG, CA-CB-CG-CD1	1, 4	TRP
FTR	5-Fluoro- tryptophan	O F	N-CA-CB-CG, CA-CB-CG-CD1	1, 4	TRP
FUA2	(2-furyl)-alanine		N-CA-CB-CG, CA-CB-CG-OD1	1, 5	Chi1
FVAL	3-Fluoro-valine	O O F CH ₃ CH ₃	N-CA-CB-FG3	1	
GBUT	Guanidinobutryric		N-CA-CB-CG, CA-CB-CG-ND, CB-CG-ND-CE	1, 1, 1	Chi1
GDPR	2-Amino-3- guanidinopropionic acid		N-CA-CB-NG, CA-CB-NG-CD	1, 1	
GGB	Canavanine		N-CA-CB-CG, CA-CB-CG-OD, CB-CG-OD-NE, CG-OD-NE-CZ	1, 1, 1, 1	Chi1

Code	Name	2D structure	Dihedral angles	Angle type	Renorm- alization scheme
GHG	(2s,4s)-2,5- diamino-4- hydroxy-5- oxopentanoic acid		N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-OE1	1, 1, 7	Chi1
GME	5-o-methyl- glutamic acid	о , , , , , , , , , , , , , , , , , , ,	N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-OE2, CG-CD-OE2-CZ	1, 1, 1, 1	Chi1,Chi2
HCS	homocysteine	NH ³ SH	N-CA-CB-CG, CA-CB-CG-SD	1, 1	Chi1,Chi2
HGA	glutamine hydrox- amate	O HIS OH	N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-NE2, CG-CD-NE2-OZ	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Chi1,Chi2
ннк	(2s)-2,8- diaminooctanoic acid		N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-CE, CG-CD-CE-CZ, CD-CE-CZ-CH, CE-CZ-CH-NJ	$1, 1, 1, 1, \\1, 1, 1, 1$	Chi1,Chi2
HIL4	4-Hydroxy-L- isoleucine	OF CH3	N-CA-CB-CG1, CA-CB-CG1-CD2	1, 1	
HL2	(2s,3r)-2-amino- 3-hydroxy-4- methylpentanoic acid	O- OH CH3	N-CA-CB-CG, CA-CB-CG-CD1	1, 1	
HLEU	Homoleucine	CH ₃	N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-CE1	1, 1, 1	Chi1,Chi2
HLU	2s,3s)-2-amino- 3-hydroxy-4- methylpentanoic acid	O CH3	N-CA-CB-CG, CA-CB-CG-CD1	1, 1	

Code	Name	2D structure	Dihedral angles	Angle type	Renorm- alization scheme
нох	4-amino-L- phenylalanine	NH ⁺ ₃ NH ₂	N-CA-CB-CG, CA-CB-CG-CD1	1, 3	PHE
HPE	Homophenylalanine	O NH3 O	N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-CE1	1, 1, 3	Chi1,Chi2
HQA	3-(8- hydroxyquinolin- 3-yl)-l-alanine		N-CA-CB-CG, CA-CB-CG-CD1	1, 12	PHE asym- metric
HRG	homoarginine		N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-CE, CG-CD-CE-NZ, CD-CE-NZ-CH	$1, 1, 1, 1, \\1, 1$	Chi1,Chi2
HRP	5-Hydroxy- tryptophan	NH ⁺ ₃ NH O OH	N-CA-CB-CG, CA-CB-CG-CD1	1, 4	TRP
HSER	homoserine	от NH [*] О-	N-CA-CB-CG, CA-CB-CG-OD	1, 1	Chi1
HTR	beta-hydroxy- tryptophane	NH [*] OH	N-CA-CB-CG, CA-CB-CG-CD1	1, 4	
HVA	3-hydroxy-l-valine	OF H ₃ C CH ₃	N-CA-CB-OG3	1	
I2M	3-methyl-l- alloisoleucine	O H ₃ C H ₃ C H ₃ C	N-CA-CB-CG1, CA-CB-CG1-CD1	1, 1	
IGL	alpha-amino-2- indanacetic acid	NH [±] or	N-CA-CB-CG1	1	

Code	Name	2D structure	Dihedral angles	Angle type	Renorm- alization scheme
IIL	Allo-Isoleucine		N-CA-CB-CG1, CA-CB-CG1-CD1	1, 1	
ILX	4,5-dihydroxy- isoleucine	OF CH3	N-CA-CB-CG1, CA-CB-CG1-CD1, CB-CG1-CD1- OD1	1, 1, 1	
IYR	3-iodo-tyrosine	OT OH	N-CA-CB-CG, CA-CB-CG-CD1		PHE asym- metric
KYN	kynurenine	NH ⁺ ₅ O NH ₂	N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-CE1	1, 1, 16	Chi1
LDO	6-hydroxy-l- norleucine	от он	N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-CE, CG-CD-CE-OZ	1, 1, 1, 1	Chi1,Chi2
LE1	Penicillamine	O HS CH3	N-CA-CB-SG3	1	
LED	(4r)-5-oxo-l- leucine	O O	N-CA-CB-CG, CA-CB-CG-CD2, CB-CG-CD2-OE	1, 1, 8	Chi1
LEF	(4s)-5-fluoro-l- leucine	NH ⁺ ₃ CH ₃ O	N-CA-CB-CG, CA-CB-CG-CD1, CB-CG-CD1-F1	1, 1, 1	Chi1
LME	(3r)-3-methyl-l- glutamic acid		N-CA-CB-CG1, CA-CB-CG1-CD, CB-CG1-CD-OE1	1, 1, 2	
LMQ	3-methyl-l- glutamine		N-CA-CB-CG1, CA-CB-CG1-CD, CB-CG1-CD-OE1	1, 1, 7	

Code	Name	2D structure	Dihedral angles	Angle type	Renorm- alization scheme
LVG	vinylglycine	OT CH2	N-CA-CB-CG	1	
LVN	4-oxo-l-valine		N-CA-CB-CG1, CA-CB-CG1-OG1	1, 8	
M2S	3-{[(r)- methylsulfinyl]- methyl}-l-valine	0 0 0 H ₃ C - H ₃	N-CA-CB-CG, CA-CB-CG-SD, CB-CG-SD-CE	1, 1, 1	
ME0	hydroxy-l- methionine		N-CA-CB-CG, CA-CB-CG-SD, CB-CG-SD-CE, CG-SD-CE-OZ	1, 1, 1, 1	MET
MEG	(3s)-3-methyl-l- glutamic acid		N-CA-CB-CG1, CA-CB-CG1-CD, CB-CG1-CD-OE1	1, 1, 2	
MEN	n-methyl- asparagine		N-CA-CB-CG, CA-CB-CG-ND, CB-CG-ND-CE	1, 1, 11	Chi1
MEQ	n5-methyl- glutamine	O O O O O O O O O O O O O O O O O O O	N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-NE2, CG-CD-NE2-CZ	1, 1, 1, 1, 1, 11	Chi1,Chi2
мно	s-oxymethionine	O- II O- II	N-CA-CB-CG, CA-CB-CG-SD, CB-CG-SD-CE	1, 1, 1	Chi1,Chi2
MOT5	5-Methoxy- tryptophan	O CH3	N-CA-CB-CG, CA-CB-CG-CD1, CE3-CZ3-OZ3- CJ3	1, 4, 3	TRP
MP34	3,4-Dimethyl- phenylalanine	CH ₃	N-CA-CB-CG, CA-CB-CG-CD1	1, 12	PHE asym- metric

Code	Name	2D structure	Dihedral angles	Angle type	Renorm- alization scheme
MPH2	2-Methyl- phenylalanine	O CH3	N-CA-CB-CG, CA-CB-CG-CD1	1, 12	Chi1
MTR5	5-Methyl- tryptophan	O CH3	N-CA-CB-CG, CA-CB-CG-CD1	1, 4	TRP
MTR6	6-Methyl- tryptophan		N-CA-CB-CG, CA-CB-CG-CD1	1, 4	TRP
MTY	m-Tyrosine	NH ⁺ 3 OH	N-CA-CB-CG, CA-CB-CG-CD1	1, 12	PHE asym- metric
NAL	2-Naphthalene	NH ⁴ 3	N-CA-CB-CG, CA-CB-CG-CD1	1, 12	PHE asym- metric
NAO1	5-hydroxy-1- naphthalene	NH ¹ OH	N-CA-CB-CG, CA-CB-CG-CD1	1, 12	Chi1
NAO2	6-hydroxy-2- naphthalene	OF NH3	N-CA-CB-CG, CA-CB-CG-CD1	1, 12	PHE asym- metric
NIY	meta-nitro- tyrosine		N-CA-CB-CG, CA-CB-CG-CD1	1, 12	Chi1
NLE	Nor-leucine	OT CH3	N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-CE	1, 1, 1	Chi1,Chi2
NVA	Norvaline	OT CH3	N-CA-CB-CG, CA-CB-CG-CD	1, 1	Chi1,Chi2

Code	Name	2D structure	Dihedral angles	Angle type	Renorm- alization scheme
OAS	o-acetylserine		N-CA-CB-OG, CA-CB-OG-CD, CB-OG-CD-CE	1, 1, 1	
OBF	(2s)-2-amino-4,4- difluorobutanoic acid		N-CA-CB-CG, CA-CB-CG-FG1	1, 1	Chi1
OCY	s-(2- hydroxyethyl)- l-cysteine	о	N-CA-CB-SG, CA-CB-SG-CD, CB-SG-CD-CE, SG-CD-CE-OZ	1, 1, 1, 1	Chi1
OLT	o-methyl-l- threonine	от сн ₃	N-CA-CB-OG1, CA-CB-OG1-CD1	1, 1	
OMT	Methionine sulfone	° ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	N-CA-CB-CG, CA-CB-CG-SD, CB-CG-SD-CE	1, 1, 1	MET
OMX	(betar)-beta- hydroxy-l-tyrosine	OH OH	N-CA-CB-CG, CA-CB-CG-CD1	1, 3	PHE asym- metric
OMY	(betar)-3-chloro- beta-hydroxy-l- tyrosine	NH ⁺ ₃ O OH	N-CA-CB-CG, CA-CB-CG-CD1	1, 12	
ONL	5-oxo-l-norleucine		N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-CE	1, 1, 1	Chi1,Chi2
ORN	Ornithine	0 0 0 0	N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-NE	1, 1, 1	Chi1,Chi2
OTYR	o-Tyrosine	O- OH	N-CA-CB-CG, CA-CB-CG-CD1	1, 12	Chi1

Code	Name	2D structure	Dihedral angles	Angle type	Renorm- alization scheme
PBF	4-benzoyl-Phe		N-CA-CB-CG, CA-CB-CG-CD1, CE1-CZ-CF-CJ, CZ-CF-CJ-CH1	1, 3, 12, 3	PHE
PF5	pentafluoro- phenylalanine		N-CA-CB-CG, CA-CB-CG-CD1	1, 3	Chi1
PFF	4-Fluoro- Phenylalanine	NH ³ O	N-CA-CB-CG, CA-CB-CG-CD1		PHE
PHI	4-Iodo-Phe	NH ³	N-CA-CB-CG, CA-CB-CG-CD1	1, 3	PHE
PPN	4-Nitro- phenylalanine		N-CA-CB-CG, CA-CB-CG-CD1	1, 3	PHE
PTR	phosphonotyrosine		N-CA-CB-CG, CA-CB-CG-CD1, CE1-CZ-OH-P, CZ-OH-P-O3P	1, 3, 9, 1	PHE
PTR2	phosphonotyrosine (charge: -2)		N-CA-CB-CG, CA-CB-CG-CD1, CE1-CZ-OH-P, CZ-OH-P-O1P	1, 3, 9, 1	PHE
PYR2	3-(2-Pyridyl)- alanine	NHI3 N	N-CA-CB-CG, CA-CB-CG-ND1	1, 12	PHE asym- metric
PYR3	3-(3-Pyridyl)- alanine	NH ³	N-CA-CB-CG, CA-CB-CG-CD1	1, 12	PHE asym- metric
PYR4	3-(4-Pyridyl)- alanine	NH ³	N-CA-CB-CG, CA-CB-CG-CD1	1, 3	PHE

Code	Name	2D structure	Dihedral angles	Angle type	Renorm- alization scheme
PYZ1	3-(1-Pyrazolyl)- alanine		N-CA-CB-NG, CA-CB-NG-ND1	1, 5	HIS
QU32	3-(2-Quinolyl)- alanine	O NH ⁴ O	N-CA-CB-CG, CA-CB-CG-CD1	1, 12	PHE asym- metric
QU33	3-(3-quinolyl)- alanine		N-CA-CB-CG, CA-CB-CG-CD1	1, 12	PHE asym- metric
QU34	3-(4-quinolyl)- alanine	NH [±] C	N-CA-CB-CG, CA-CB-CG-CD1	1, 12	Chi1
QU35	3-(5-Quinolyl)- alanine		N-CA-CB-CG, CA-CB-CG-CD1	1, 12	PHE asym- metric
QU36	3-(6-Quinolyl)- alanine		N-CA-CB-CG, CA-CB-CG-CD1	1, 12	PHE asym- metric
QX32	3-(2-quinoxalyl)- alanine		N-CA-CB-CG, CA-CB-CG-ND1	1, 12	PHE asym- metric
SEP	phosphoserine		N-CA-CB-OG, CA-CB-OG-P, CB-OG-P-O3P	1, 1, 1	
SEP2	phosphoserine (charge: -2)		N-CA-CB-OG, CA-CB-OG-P, CB-OG-P-O1P	1, 1, 1	
SLZ	thialysine	OT NH ⁴ 3	N-CA-CB-SG, CA-CB-SG-CD, CB-SG-CD-CE, SG-CD-CE-NZ	1, 1, 1, 1	Chi1

Code	Name	2D structure	Dihedral angles	Angle type	Renorm- alization scheme
SME	Methionine sulfox- ide		N-CA-CB-CG, CA-CB-CG-SD, CB-CG-SD-CE	1, 1, 1	MET
STYA	styryl-alanine	NH [±] 3	N-CA-CB-CG, CA-CB-CG-CD, CG-CD-CE-CZ1	1, 12, 3	Chi1
SYM	2s,4r-4- methylglutamate	NH ⁺ ₃ CH ₃ O	N-CA-CB-CG, CA-CB-CG-CD1, CB-CG-CD1-OE1	1, 1, 2	Chi1
TBP4	4-tert-butyl- phenylalanine	NH ⁴ CH ₃ CH ₃	N-CA-CB-CG, CA-CB-CG-CD1, CE1-CZ-CH-CJ1	1, 3, 17	PHE
TEZA	3-(2-Tetrazolyl)- alanine		N-CA-CB-NG, CA-CB-NG-ND1	1, 5	HIS
TFG2	2- (Trifluoromethyl)- phenylglycine		N-CA-CB-CG1, CB-CG1-CH1- FH1	14, 17	
TFG3	3- (Trifluoromethyl)- phenylglycine		N-CA-CB-CG1, CG1-CD1-CH1- FH1	14, 17	
TFG4	4- (Trifluoromethyl)- phenylglycine		N-CA-CB-CG1, CD1-CE-CH-FH1	13, 17	
TFLE	5,5,5-Trifluoro- DL-leucine		N-CA-CB-CG, CA-CB-CG-CD1	1, 1	Chi1
TFP2	2- (Trifluoromethyl)- phenylalanine		N-CA-CB-CG, CA-CB-CG-CD1, CG-CD1-CH1- FH1	1, 12, 17	Chi1

Code	Name	2D structure	Dihedral angles	Angle type	Renorm- alization scheme
TFP3	3- (Trifluoromethyl)- phenylalanine		N-CA-CB-CG, CA-CB-CG-CD1, CD1-CE1-CH1- FH1	1, 12, 17	PHE asym- metric
TFP4	4- (Trifluoromethyl)- phenylalanine		N-CA-CB-CG, CA-CB-CG-CD1, CE1-CZ-CH1-FH1	1, 3, 17	PHE
TH6	4-hydroxy-l- threonine	OF OH	N-CA-CB-CG, CA-CB-CG-OD	1, 1	
THA3	3-(3-thienyl)- alanine	NH ⁺ ₃ O'	N-CA-CB-CG, CA-CB-CG-CD1	1, 5	HIS
THG2	2-thienylglycine		N-CA-CB-SG1	14	
THG3	3-thienylglycine		N-CA-CB-CG1	14	
THIC	Thio-citrulline	O H NH2 O' S NH2	N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-NE, CG-CD-NE-CZ	1, 1, 1, 1	Chi1,Chi2
TIH	3-(2-thienyl)- alanine	NH: O	N-CA-CB-CG, CA-CB-CG-SD1	1, 3	HIS
ТРО	phosphothreonine		N-CA-CB-OG1, CA-CB-OG1-P, CB-OG1-P-O3P	1, 1, 1	
TPO2	phosphothreonine (charge: -2)		N-CA-CB-OG1, CA-CB-OG1-P, CB-OG1-P-O1P	1, 1, 1	

Code	Name	2D structure	Dihedral angles	Angle type	Renorm- alization scheme
TRO	2-hydroxy- tryptophan		N-CA-CB-CG, CA-CB-CG-CD1	1, 4	Chi1
TRX	6-hydroxy- tryptophan	O HIS CHARACTER OF	N-CA-CB-CG, CA-CB-CG-CD1	1, 4	TRP
TRZ4	3-(1,2,4-Triazol-1- yl)-alanine		N-CA-CB-NG, CA-CB-NG-ND1	1, 5	HIS
TTQ	6-amino-7- hydroxy-l- tryptophan		N-CA-CB-CG, CA-CB-CG-CD1	1, 4	TRP
TY2	3-Amino-L- tyrosine	O O O	N-CA-CB-CG, CA-CB-CG-CD1	1, 12	PHE asym- metric
TYI	3,5-diiodotyrosine	NH3 OH	N-CA-CB-CG, CA-CB-CG-CD1	1, 3	PHE
TYQ	3-amino-6- hydroxy-tyrosine		N-CA-CB-CG, CA-CB-CG-CD1	1, 12	Chi1
TZA4	(4-thiazolyl)- alanine	NH ⁺ ₃ O	N-CA-CB-CG, CA-CB-CG-ND2	1, 5	HIS
UN1	2-Aminoadipic acid		N-CA-CB-CG, CA-CB-CG-CD, CB-CG-CD-CE, CG-CD-CE-OZ1	1, 1, 1, 2	Chi1,Chi2
VAH	Hydroxynorvaline		N-CA-CB-CG2, CA-CB-CG2-CD	1, 1	

Code	Name	2D structure	Dihedral angles	Angle type	Renorm- alization scheme
WFP	3,5-Difluoro- phenylalanine	NH ³ O	N-CA-CB-CG, CA-CB-CG-CD1	1, 3	PHE
YCM	cysteine-s- acetamide		N-CA-CB-SG, CA-CB-SG-CD, CB-SG-CD-CE, SG-CD-CE-OZ1	1, 1, 1, 7	Chi1
YOF	3-fluorotyrosine	O H	N-CA-CB-CG, CA-CB-CG-CD1	1, 12	PHE asym- metric

Table S2: Bins used on different types of dihedral angles. Types 1-7 correspond approximately to the bins used in the 2002 Dunbrack rotamer library. Types 8-15 have been introduced to handle dihedral angles along bonds that do not have equivalent in natural sidechains.

Dihedral			
angle kind	Examples	Full interval	Bins
(Table S1)			
	χ_1 for all except PRO;		
	χ_2 for ARG, GLN, GLU,		
1	ILE, LEU, MET, LYS;	(-120, 240)	(0, 120), (120, 240), (-120, 0)
	χ_3 for ARG, LYS, MET;		
	χ_4 for ARG, LYS		
2	χ_2 for ASP and χ_3 for GLU	(-90, 90)	(30, 90), (-30, 30), (-90, -30)
3	χ_2 for PHE and TYR	(-30, 150)	(30, 150), (-30, 30)
4	χ_2 for TRP	(-180, 180)	(-180, -60), (-60, 60), (60, 180)
5	χ_2 for HIS	(-120, 240)	(0, 120), (120, 240), (-120, 0)
6	y for ASN	(165 105)	(-165, -90), (-90, -42), (-42, 12),
0	χ_2 for ASN	(-105, 195)	(12, 60), (60, 110), (110, 195)
7	ve for CLN	(210, 150)	(-210, -98), (-98, -18), (-18, 61),
1		(-210, 150)	(61, 150)
8	AS2	(-180, 180)	(-180, -60), (-60, 60), (60, 180)
9	χ_4 for 2NP	(-180, 180)	(-180, 0), (0, 180)
10	Biphenylalanine	(-90, 90)	(-90, 0), (0, 90)
11	N-methyl-asparagine	(-90, 270)	(-90, 90), (90, 270)
12	χ_2 for ortho or meta substitutes of PHE (e.g., APD)	(-210, 150)	(-210, -150), (-150, -30), (-30, 30), (30, 150)
13	χ_1 for Phenylglycine	(-30, 150)	(-30, 150)
	χ_1 for ortho or meta		
14	substitutents of Phenyl-	(-210, 150)	(-210, -30), (-30, 150)
	glycine (e.g., CHP)		
15	χ_1 for Tertleucine	(0, 120)	(0, 120)
16	χ_3 for kynurenine	(-180, 180)	(-180, -90), (-90, 0), (0, 90), (90, 180)
17	tert-butyl or trifluoro- methyl substituents on	(0, 120)	(0, 60), (60, 120)
	aromatic rings	(0,)	(-,, (,)

Table S3: Description of the different renormalization schemes used to predict rotamer probabilities.

Type of renormal- ization (Table S1)	Description	Application criterion
Chi1	Renormalize the rotamer proba- bilities of the first dihedral angle	Sidechain starting with linear chains of three carbon or sulfur atoms
Chi1,Chi2	Renormalize the rotamer proba- bilities of the first two dihedral angles	Sidechain starting with linear chains of four carbon or sulfur atoms
PHE	Renormalize the first two dihedral angles with the experimental ro- tamer probabilities of PHE	Derivatives of PHE with symmet- ric aromatic ring
PHE asymmetric	Renormalize the first two dihedral angles with the experimental ro- tamer probabilities of PHE shared equally between each 180 degree symmetrical bin	Derivatives of PHE with asym- metric aromatic ring (meta- substituents)
TRP	Renormalize the first two dihedral angles with the experimental ro- tamer probabilities of TRP	Derivatives of TRP
HIS	Renormalize the first two dihedral angles with the experimental ro- tamer probabilities of HIS	Derivatives of HIS
MET	Renormalize the first three dihe- dral angles with the experimental rotamer probabilities of MET	Derivatives of MET

Table S4: Comparison between experimental and predicted 3D conformations of non-natural sidechains. Nd indicates the number of dihedral angles, Nr indicates the total number of instances in all considered structures, S stands for the S score, as defined in Materials and Methods. N_i stands for the fraction of correctly predicted rotameric conformations up the i^{th} dihedral angle. The last column gives the list of structures used for each non-natural sidechain. The three phosphoryated residues (PTR, SEP, TPO) are listed at the end.

Name	Nd	Nr	S	N_1	N_2	N_3	N_4	List of structures
0A1	3	1	1.00	1.00	1.00	1.00		3QTC
0AF	2	12	1.00	1.00	1.00			1MAE, 1MAF, 3L4M, 3ORV, 3PXS, 3PXT, 3PXW
0BN	2	2	1.00	1.00	1.00			7KME, 8KME
200	2	1	1.00	1.00	1.00			2AKW
2AG	2	3	0.00	0.00	0.00			3COG
2AS	2	14	0.54	1.00	0.07			1KKR, 1W3M
2FM	4	1	1.00	1.00	1.00	1.00	1.00	1PFV
32T	2	1	1.00	1.00	1.00			1RMO
3CF	2	2	0.75	1.00	0.50			3OQZ
3GL	3	1	0.33	1.00	0.00	0.00		2ZJP
3MY	2	9	0.44	0.67	0.22			2WDX, 2XAD, 3MG9, 3MGB
4BF	2	22	0.98	1.00	0.95			2AG6, 3NI3, 3Q9G, 3Q9I
4CF	2	4	1.00	1.00	1.00			3OQY, 3QE4
4CY	3	2	0.67	1.00	0.50	0.50		3OR0
4FW	2	1	1.00	1.00	1.00			1RM9
4HT	2	4	0.00	0.00	0.00			1RU9, 1RUA, 1RUL, 1RUM
4IN	2	7	0.79	1.00	0.57			10XF, 2HXX
4PH	2	1	1.00	1.00	1.00			3BV9
6CW	2	4	1.00	1.00	1.00			2AXI, 2GV2, 3FEA
AA4	3	1	1.00	1.00	1.00	1.00		1MIK
ABA	1	261	0.88	0.88				1B6J, 1B6K, 1B6L, 1B6M, 1B6P, 1C5F, 1CPI, 1CSA, 1CWA, 1CWB, 1CWC, 1CWH, 1CWL, 1CWM, 1CYN, 1D4K, 1D4L, 11KF, 1M63, 1MF8, 1MTR, 1QNG, 1QNH, 1RBD, 1XQ7, 1YLC, 1YLD, 1Z1H, 1Z1R, 1Z3L, 1ZII, 1ZIJ, 2C5V, 2ESL, 2J9K, 2JUV, 2O40, 2OJU, 2POY, 2RMA, 2RMB, 2RMC, 2WFJ, 2X2C, 2X7K, 2Z6W, 2ZOK, 2ZOL, 2ZSV, 2ZSW, 3A0K, 3BO7, 3BXR, 3BXS, 3DCK, 3DCR, 3EOV, 3FSM, 3G10, 3HAU, 3HAW, 3HBO, 3HDK, 3HLO, 3HVP, 3HZC, 312L, 3IA9, 3IAW, 3KA2, 3LO6, 3ODI, 3ODL, 4HVP, 7HVP, 8HVP, 9JDW
ACZ	3	2	0.67	1.00	0.50	0.50		1MLY
AGM	4	22	0.53	1.00	0.95	0.09	0.09	1E6Y, 1HBM, 1HBN, 1HBO, 1HBU, 1MRO, 3M1V, 3M2R, 3M2U, 3M2V, 3M30, 3M32, 3POT
AHB	2	5	0.50	0.80	0.20			1NT0, 2QC9, 2ZGD
AHP	4	3	0.58	0.67	0.67	0.67	0.33	1J4X, 3LO9

Name	Nd	Nr	S	N_1	N_2	N_3	N_4	List of structures
ALC	2	32	0.55	0.84	0.25			1B3H, 1D5M, 1D5X, 1D5Z, 1D6E, 1HBT, 1NZQ, 100D, 1QUR, 1THS, 1YWH, 2A2X, 2ANK, 2FEQ, 2FES, 3DPO, 3DPP, 3DPQ, 4THN, 5GDS
ALN	2	10	0.65	0.70	0.60			1B0H, 1FIV, 2FIV, 3FIV, 3OE0
ALO	1	1	0.00	0.00				2JUU
ARO	4	4	0.81	1.00	0.75	0.75	0.75	1FFU, 1FFV
AS2	2	4	0.75	1.00	0.50			2GZ3
BB8	2	3	0.67	0.67	0.67			1D8T, 2C77
BCS	4	2	0.75	1.00	1.00	1.00	0.00	1EH8, 3L00
BHD	2	6	0.25	0.33	0.17			1AUT, 1ERM, 1PFX, 1XKA, 1XKB
BIF	3	4	0.33	1.00	0.00	0.00		1YYL, 2I5Y
C2N	1	2	1.00	1.00				1TZM
CAN	3	3	0.00	0.00	0.00	0.00		2CAN
CCS	4	17	0.31	0.59	0.35	0.18	0.12	1DSS, 1ERR, 1GTI, 1L2I, 1STF, 2BJ4, 2JFA, 3DMT, 3PQZ
CHG	1	4	0.25	0.25				4THN, 5GDS, 7KME, 8KME
CSA	4	4	0.56	1.00	0.50	0.50	0.25	1DWQ, 3NPF
CTE	2	3	0.83	1.00	0.67			2AR8, 2V7L, 2X68
CTH	2	2	0.50	1.00	0.00			1A7Z
DAB	2	13	0.50	0.62	0.38			1B4H, 1J73, 2PM1, 2W76, 3D3S, 3DS9, 3FQ9, 3KED
DAH	2	10	0.65	0.90	0.40			1IVV, 1RNR, 2VH3, 2ZWE, 2ZWF, 2ZWG, 6PAH
DBY	2	2	1.00	1.00	1.00			1EBA
DDZ	1	4	0.50	0.50				1E33, 1HDH, 2VQR
DMK	2	8	0.12	0.12	0.12			1NJT, 1NKK
DPP	1	7	0.00	0.00				1B5H, 3KNH, 3KNJ, 3KNL, 3KNN
ESC	4	1	0.50	1.00	1.00	0.00	0.00	1KBG
F2F	2	1	1.00	1.00	1.00			3D3V
FCL	2	2	0.50	1.00	0.00			10KW
FGL	1	5	0.40	0.40				2VH3, 2W8S
FT6	2	1	1.00	1.00	1.00			2NW9
FTR	2	26	0.92	1.00	0.85			1I45, 1NEY, 1NF0, 2ZNX, 5FWG
GHG	3	3	0.56	0.67	0.67	0.33		1RU9, 1RUA, 1RUL
HCS	2	14	0.79	1.00	0.57			1Q8A, 1Q8J, 1U22, 1XDJ, 2CI5, 3BOF, 3BOL, 3BQ5
HGA	4	2	0.50	1.00	1.00	0.00	0.00	1XFG
HL2	2	2	0.50	1.00	0.00			3AH8
HLU	2	1	0.50	1.00	0.00			1ROV
HOX	2	1	0.50	1.00	0.00			3IDN
HPE	3	1	1.00	1.00	1.00	1.00		1B1H
HQA	2	2	1.00	1.00	1.00			3FCA
HRP	2	1	0.50	1.00	0.00			1YIA
IIL	2	25	0.84	0.88	0.80			1Q4V, 1RH4, 1TGG, 3I2L

Name	Nd	Nr	S	N_1	N_2	N_3	N_4	List of structures
ILX	3	3	0.33	1.00	0.00	0.00		1K83, 2VUM, 3CQZ
IYR	2	24	0.54	0.71	0.38			1CF0, 1WQ3, 2D8O, 2D8P, 2D8W, 2D97, 2D98, 2R1Q, 2Z10, 2Z11, 2ZP1, 2ZXV, 3GFD
KYN	3	11	0.30	0.64	0.27	0.00		1T5M, 1T5N, 2R2N, 2VOV, 2VOX, 3E2Z, 3PD6
LDO	4	4	0.00	0.00	0.00	0.00	0.00	1JSR
LE1	1	9	0.22	0.22				3H5F, 3M17, 3M1B
LED	3	1	0.33	1.00	0.00	0.00		2IUW
LEF	3	2	1.00	1.00	1.00	1.00		10GW
LME	3	2	0.33	0.50	0.50	0.00		1T5M, 1T5N
LVG	1	2	0.50	0.50				1TDK
LVN	2	1	1.00	1.00	1.00			3KT7
ME0	4	12	0.38	1.00	0.50	0.00	0.00	3NBB, 3NBJ
MEN	3	64	0.60	0.78	0.52	0.50		1ALL, 1B33, 1B8D, 1D8T, 1EYX, 1GH0, 1HA7, 1JBO, 1KTP, 1PHN, 1QGW, 1XF6, 1XG0, 2BV8, 2C77, 2V8A, 2VJH, 2VJT, 3BRP, 3DBJ, 3O18, 3O2C
MEQ	4	4	0.19	0.50	0.25	0.00	0.00	1NV8, 3FMY, 3GN5
МНО	3	47	0.51	0.77	0.53	0.23		1EK0, 1F4G, 1NLR, 1SF5, 1ST2, 1UP0, 1UP2, 1XJO, 2A9E, 2IDT, 2IDU, 2IQF, 2IUF, 2QDV, 2QDW, 3D94, 3F00, 3M1X, 9PTI
MTY	2	5	0.50	0.80	0.20			1BIQ, 2TOH, 3HFV, 3HFZ
NAL	2	7	0.29	0.57	0.00			1SKL, 1ZH0, 2ITK, 2Q5A, 4THN, 5GDS
NIY	2	34	0.53	0.91	0.15			1K4Q, 1SDA, 2ADP, 2H5U, 2XAK, 2XAP, 2XAV, 2XAW, 2XAX, 2XAY, 2XAZ, 2XOF, 3DIV
NLE	3	104	0.55	0.73	0.65	0.28		1B7H, 1CFN, 1D5E, 1EOL, 1F3R, 1FGL, 1HD9, 1JB6, 1MMT, 1R1L, 1WY3, 1WY4, 1Z3L, 1Z3M, 2F4K, 2GYP, 2J9J, 2J9K, 2JE4, 2O40, 2RLN, 2RM9, 2RMD, 2RME, 2WUH, 2Z2T, 3DCK, 3DCR, 3FSM, 3G3P, 3GI0, 3HAU, 3HAW, 3HBO, 3HDK, 3HLO, 3HZC, 3I2L, 3IA9, 3IAW, 3JWB, 3KA2
NVA	2	13	0.85	0.92	0.77			1B6H, 1C9Y, 1JDX, 1OBC, 1OBH, 1Z3M, 1Z3P, 2BTE, 2I6U
OAS	3	16	0.31	0.94	0.00	0.00		1EBV, 2C58, 2VAX, 3FYU
OCY	4	24	0.39	0.54	0.54	0.25	0.21	1ASV, 1VSD, 1VSH, 1VSI, 1VSJ, 2R9S, 3F12, 3F13, 3FV8, 3KVX, 3O4Q
OMT	3	21	0.52	0.67	0.67	0.24		1EA0, 1H6N, 1H7K, 1M85, 1MQF, 1NM0, 2CAG, 2CAH, 2F1K, 2ISA
OMX	2	16	1.00	1.00	1.00			1HH3, 1HHA, 1HHC, 1HHF
OMY	2	51	0.73	0.86	0.59			1AA5, 1C0Q, 1C0R, 1FVM, 1GHG, 1GO6, 1HHU, 1HHY, 1HHZ, 1PN3, 1PNV, 1QD8, 1RRV, 1SHO, 2WDX, 2XAD, 3MG9, 3MGB

Name	Nd	Nr	S	N_1	N_2	N_3	N_4	List of structures
ONL	3	15	0.44	0.87	0.33	0.13		1ECC, 1ECG, 1OFE, 2J6H, 2Q3Z, 3BRM, 3DLA
ORN	3	117	0.48	0.86	0.43	0.15		1C30, 1HQG, 1KEE, 1M6V, 1T36, 1T5M, 1T5N, 1TK2, 1X7D, 2PM5, 2W6T, 2W6U, 3GMZ, 3IDJ, 3IT6, 3NI3, 3Q9G, 3Q9H, 3Q9I, 3Q9J, 3S61, 3THJ
PBF	4	4	0.38	1.00	0.50	0.00	0.00	1EEN, 2HGZ, 3AJI
PFF	2	13	0.85	1.00	0.69			10L1, 10L2, 2C5V, 2UUE, 2WHB, 2X1N, 3D39, 3F3C
PHI	2	11	0.68	0.82	0.55			1CZI, 1GA1, 1GA4, 1NLU, 1ORW, 1T6H, 1TF9
PPN	2	4	0.50	0.50	0.50			1YTJ, 2WHH, 3RCE
SLZ	4	6	0.29	0.50	0.50	0.17	0.00	1BM2, 2J9J, 2J9K, 3DIG
SME	3	32	0.49	0.69	0.50	0.28		1GKF, 1GM7, 1GM9, 1GWF, 1WMF, 2ATM, 2OOV, 2OQE, 2XN2, 3H6S, 3KO6, 3KSG, 3MMH, 3O1F
SYM	3	2	1.00	1.00	1.00	1.00		1SD3
TH6	2	5	0.40	0.80	0.00			2WW7
TIH	2	3	1.00	1.00	1.00			1EOJ, 1KW0, 1MMK
TRO	2	4	0.75	0.75	0.75			1G3P, 1KB0, 3NZJ
TRX	2	3	0.83	1.00	0.67			1K83, 2VUM, 3CQZ
TTQ	2	4	1.00	1.00	1.00			2HXC, 2I0S
TY2	2	8	0.44	0.88	0.00			2VH3, 2XO4, 2XO5, 3MBB
TYI	2	30	0.83	0.90	0.77			1CTP, 1L0S, 2AXE, 2C3V, 2D8O, 2D8P, 2D8W, 2D97, 2D98, 2NOO, 2VLW, 3GH8
TYQ	2	4	1.00	1.00	1.00			1D6U, 1D6Y
VAH	2	2	1.00	1.00	1.00			3AJR
WFP	2	21	0.95	1.00	0.90			ЗКТЈ, ЗКТК
YCM	4	91	0.30	0.57	0.35	0.21	0.09	1L0Q, 1N1X, 1N3Z, 1PX5, 1TJG, 1TJH, 1TJI, 1TQ9, 2A8P, 2A8Q, 2A8R, 2A8S, 2O40, 2R0W, 2R0Z, 3BCP, 3DCK, 3DCR, 3ESW, 3EYS, 3EYU, 3FKZ, 3FL0, 3FL1, 3FL3, 3FSM, 3GI0, 3HLO, 3HZC, 3I2L, 3IA9, 3IAW, 3JWD, 3KA2
YOF	2	69	0.82	0.97	0.67			1RRX, 1XDC, 1XIL, 3FYG

Name	Nd	Nr	S	N_1	N_2	N_3	N_4	List of structures
PTR	4	467	0.53	0.81	0.52	0.25		 IAIB, IAIC, IAIE, IA31, IA81, IAD5, IAYA, 1AYB, 1AYC, 1BF5, 1BG1, 1BM2, IBMB, 1CM8, 1D4W, 1EEN, 1EEO, IFIW, 1FBV, 1FMK, 1FPR, 1FYR, IGIF, 1G1G, 1G1H, 1GAG, 1GNG, IH9O, 113Z, 1IR3, 1J4X, 1JYQ, 1JYR, IK3A, 1K4S, 1K4T, 1KA6, 1KC2, 1KSW, ILCJ, 1LCK, 1LKK, 1LKL, 1NH3, 1NZL, INZV, 109U, 1004, 1P13, 1PKG, 1PTT, IPTU, 1PTV, 1PTY, 1QCF, 1QG1, 1QPC, 1QPD, 1QPE, 1QPJ, 1R1P, 1R1Q, IRIS, 1RQQ, 1RR8, 1RRJ, 1SC7, 1SEU, ISHA, 1SHB, 1SHD, 1SPS, 1T81, 1TL8, 1TRN, 1TZE, 1U54, 1UUR, 1UUS, 1X27, 1XXP, 1YGR, 1YGU, 1YI6, 1YRK, 1YVH, 1YVJ, 1YVL, 1YWN, 1ZFP, 2AUH, 2B4S, 2B7A, 2C0I, 2C00, 2C0T, 2CBL, 2C19, 2CIA, 2CJM, 2CJZ, 2DQ7, 2DVJ, 2DXP, 2ERK, 2FCI, 2H5K, 2H7F, 2H8H, 2HCK, 2HDX, 2HMH, 2HWL, 2I6O, 2IUH, 2IUI, 2IVT, 2IVU, 2IVV, 2JOL, 2L1C, 2OFU, 2OH4, 2OQ1, 2OW3, 2PLD, 2PLE, 2PTK, 2PVF, 2Q8Y, 2Q07, 2QOB, 2QON, 2QOQ, 2QYQ, 2SRC, 2V7A, 2VIF, 2VX3, 2W11, 2WO6, 2X2K, 2X2L, 2X2M, 2XA4, 2XKK, 2Z8C, 2Z8P, 2ZM1, 2ZM3, 2ZM4, 2ZOQ, 2ZYB, 3AC1, 3AC2, 3AC3, 3AC4, 3AC5, 3AC8, 3ACJ, 3ACK, 3AD4, 3AD5, 3AD6, 3ANQ, 3ANR, 3BU3, 3BU5, 3BU6, 3BUM, 3BUN, 3BUO, 3BUW, 3BUX, 3BYM, 3BVO, 3C7Q, 3CD3, 3CI5, 3CLY, 3D42, 3D44, 3DA9, 3DK6, 3DK7, 3DQW, 3E62, 3E63, 3E64, 3EB0, 3EYG, 3EYH, 3F5P, 3F7Z, 3F88, 3FUP, 3FXX, 3GB2, 3GQI, 3IO7, 3IOK, 3JY9, 3K2L, 3KCK, 3KMM, 3KRR, 3KUL, 3KVW, 3KXZ, 3L4J, 3L4K, 3LCK, 3LPB, 3LXN, 3LXP, 3MAZ, 3ML4, 3MXC, 3MXY, 3N7Y, 3N84, 3N8M, 3NNX, 3OB1, 3OB2, 3OLL, 3OLR, 3OMH, 3OP0, 3PFV, 3PLF, 3PX7, 3PY3, 3Q32, 3Q6W, 3SRV, 3TL0, 3ZRK, 3ZRM

Name	$\mathbf{N}\mathbf{d}$	\mathbf{Nr}	\mathbf{S}	N_1	N_2	N_3	List of structures
SEP	3	781	0.49	0.58	0.40		1F8A, 1FA9, 1FMO, 1FU0, 1GPA, 1GZ2, 1H1W, 1H4X, 1HJK, 117W, 1J3H, 1JBP, 1JDY, 1JLU, 1K35, 1KHX, 1KKM, 1L3R, 1L7P, 1LF8, 1LWN, 1LWO, 1MKI, 1OHE, 1OKY, 1OKZ, 1P16, 1P22, 1P5D, 1P5G, 1PCJ, 1PCM, 1PJQ, 1PJS, 1PUA, 1PY1, 1Q24, 1Q61, 1Q62, 1Q8T, 1Q8U, 1Q8W, 1QJA, 1QJB, 1R0Z, 1RDQ, 1RE8, 1REJ, 1REK, 1RZR, 1SMH, 1STC, 1SVE, 1SVG, 1SVH, 1SYK, 1SZA, 1SZM, 1T15, 1T29, 1T2V, 1TH1, 1U5Q, 1U5R, 1U7F, 1U7V, 1U9I, 1UHG, 1UJK, 1UU3, 1UU7, 1UU8, 1UU9, 1UVR, 1V18, 1VEB, 1VKL, 1VRV, 1XH4, 1XH5, 1XH6, 1XH7, 1XH8, 1XH9, 1XHA, 1XJD, 1Y98, 1YDR, 1YDS, 1YDT, 1YHS, 1Y13, 1Y14, 1YWT, 1Z5M, 1Z8D, 1ZEB, 1ZEF, 1ZVV, 2AK7, 2AZM, 2B05, 2BIK, 2BR9, 2BTP, 2BVA, 2BZI, 2C1A, 2C1B, 2C1J, 2C1N, 2C30, 2C63, 2C74, 2CDZ, 2CEF, 2CEZ, 2CFJ, 2CPK, 2DU3, 2DU5, 2DU6, 2ERZ, 2F57, 2FEP, 2FKF, 2FOO, 2FWN, 2G57, 2GBL, 2GCD, 2GFC, 2GHQ, 2GHT, 2GLQ, 2GNF, 2GNG, 2GNH, 2GNI, 2GNJ, 2GNL, 2GPA, 2GU8, 2H4L, 2H5A, 210E, 2J0I, 2J90, 2JDS, 2JDT, 2JDV, 2JED, 2JFL, 2JG8, 2KMD, 2L5J, 2LAJ, 2LAY, 2LAZ, 2LB0, 2NPM, 2NRU, 2NZU, 2NZV, 2OBJ, 2OEN, 20IB, 2OIC, 2OID, 2OVQ, 2PE0, 2PE1, 2PE2, 2PIL, 2PSG, 2PT3, 2PUM, 2QNR, 2QVS, 2RSL, 2UVX, 2UVY, 2UVZ, 2UW0, 2UW3, 2UW4, 2UW5, 2UW6, 2UW7, 2UW8, 2V7O, 2VAG, 2VNW, 2VNY, 2V00, 2V03, 2VO6, 2VO7, 2VXC, 2W5V, 2W5W, 2W5X, 2WH0, 2X4Z, 2XCH, 2XCK, 2XIX, 2XIY, 2XIZ, 2XJ1, 2XJ2, 2X20, 2XZ1, 2Y1K, 2Z5Z, 3A77, 3AG9, 3AGL, 3AGM, 3AJ4, 3AMA, 3AMB, 3AMV, 3AXY, 3BEG, 3BGM, 3BGP, 3BGQ, 3BGZ, 3BH8, 3BH9, 3BHB, 3BKQ, 3BWJ, 3DN, 3DNF, 3DVL, 3ESC, 3E8E, 3EFZ, 3EQU, 3EQV, 3GA7, 3GC1, 3GCJ, 3GCK, 3GCL, 3GP3, 3H9J, 3DN, 3DNF, 3DVL, 3ESC, 3E8E, 3EFZ, 3EQU, 3EQV, 3GA7, 3GC1, 3GCJ, 3GCK, 3GCL, 3GP3, 3H9F, 3H9O, 3HGK, 3HL2, 3HRC, 3HRF, 3I3W, 3I6N, 3IAF, 3IDB, 3IDC, 3IFQ, 3IOP, 3IQJ, 3IQU, 3IQV, 3IW4, 3JRW, 3JZM, 3K05, 3K0E, 3K0H, 3K0H, 3KAF, 3K10, 3KL1, 3KKV, 3KRQ, 3KVW, 3L41, 3L6F, 3L9L, 3L9M, 3L9N, 3LJ0, 3LJ1, 3LJ2, 3MA3, 3MHR, 3MK0, 3MK1, 3MK2, 3MVJ, 3N8F, 3NAK, 3NAY, 3NIU, 3NKX, 3NUN, 3NUS, 3NUU, 3NUY, 3NX8, 3NYH, 3O2Q, 3OTL, 308I, 30BZ, 3OGW, 3OQW, 3OQW, 3OQW, 3OCX, 3QD3, 3QF1, 3QLC, 3HAG, 3HAF, 3IDB, 3IDC, 3IFQ, 3HOJ, 3HSF, 3NAK, 3NAY, 3NIU, 3NKX, 3NUN, 3N

Name	Nd	Nr	S	N_1	N_2	N_3	List of structures
TPO	3	589	0.69	0.81	0.57		1APM, 1ATP, 1BKX, 1BX6, 1CDK, 1CM8, 1CMK, 1CTP, 1E9H, 1FMO, 1FOT, 1FQ1, 1G6G, 1GXC, 1GY3, 1H1P, 1H1Q, 1H1R, 1H1S, 1H24, 1H25, 1H26, 1H27, 1H28, 1IB1, 1J3H, 1J4X, 1JBP, 1JLU, 1JST, 1JSU, 1L3R, 1LC7, 1NEX, 1O6K, 1O6L, 1O9D, 1O9F, 1OGU, 1O19, 1OIU, 1OIY, 1OL5, 1OL7, 1P5E, 1PKD, 1Q24, 1Q4K, 1Q61, 1Q62, 1Q8T, 1Q8U, 1Q8W, 1QMZ, 1RDQ, 1RE8, 1REJ, 1REK, 1SMH, 1STC, 1SVE, 1SVG, 1SVH, 1SYK, 1SZM, 1TH1, 1U91, 1UA2, 1UMW, 1V54, 1V55, 1VEB, 1W98, 1XH4, 1XH5, 1XH6, 1XH7, 1XH8, 1XH9, 1XHA, 1XJD, 1YDR, 1YDS, 1YDT, 1YJM, 1YRP, 1ZRZ, 2A19, 2A1A, 2AST, 2B2T, 2BFX, 2BFY, 2C1A, 2C1B, 2C6T, 2CCH, 2CCI, 2CJM, 2CPK, 2DYR, 2DYS, 2EIJ, 2EIK, 2EIL, 2EIM, 2EIN, 2ERK, 2ERZ, 2FF4, 2G9X, 2GA3, 2GBL, 2GFC, 2GNF, 2GNG, 2GNH, 2GNI, 2GNJ, 2GNL, 2GU8, 2I0E, 2IW6, 2IW8, 2IW9, 2J90, 2JDO, 2JDR, 2JDS, 2JDT, 2JDV, 2JFL, 2JFM, 2JGZ, 2JOC, 2KFU, 2KMD, 2LAX, 2LB2, 2LB3, 2NRU, 2NRY, 208Y, 2OIB, 2OIC, 2OID, 2OVQ, 2OVR, 2PIE, 2Q5A, 2Q8Y, 2QCS, 2QKW, 2QUR, 2QVS, 2RLT, 2UVX, 2UVY, 2UVZ, 2UW0, 2UW3, 2UW4, 2UW5, 2UW6, 2UW7, 2UW8, 2UW9, 2UZB, 2UZZ, 2UZL, 2V7D, 2VAG, 2VGO, 2VGP, 2VNW, 2VNY, 2VO0, 2VO3, 2VO6, 2VO7, 2VRX, 2W08, 2W1C, 2W30, 2W8D, 2WMA, 2WMB, 2WTV, 2X39, 2XH5, 2XIK, 2Y69, 2Y94, 2ZSP, 2ZXW, 3A62, 3A7F, 3A7G, 3A7H, 3A7I, 3A7J, 3A8W, 3A8X, 3ABK, 3ABL, 3ABM, 3AG1, 3AG2, 3AG3, 3AG4, 3AG9, 3AGL, 3AGM, 3AL3, 3ALO, 3AMA, 3AMB, 3ASN, 3ASO, 3BHT, 3BHU, 3BHV, 3BLH, 3BLQ, 3BLR, 3BWJ, 3BZI, 3C4W, 3C5L, 3CKX, 3COM, 3CQU, 3CQW, 3D0E, 3D5W, 3DDP, 3DDQ, 3DND, 3DNE, 3DOG, 3DPC, 3DVL, 3E5A, 3E6Y, 3E87, 3E88, 3E8C, 3E8D, 3E8E, 3F69, 3FBV, 3FH1, 3FJQ, 3FVH, 3FXZ, 3FY0, 3H9F, 3HA6, 3HGK, 3HIK, 3HUF, 3IDB, 3IDC, 3IW4, 3K09, 3KOA, 3KOC, 3K0E, 3K2L, 3KK8, 3KF9, 3KKV, 3L9L, 3L9M, 3L9N, 3LJ0, 3LJ1, 3LJ2, 3LQ5, 3LW1, 3M8W, 3M8Y, 3M8Z, 3MI9, 3MIA, 3MV5, 3MVH, 3MVJ, 3MY1, 3MY5, 3NX8, 3OTL, 3OB1, 3OCB, 3OJY, 3OCG, 3OT9, 3OVV, 3OW3, 3OW4, 3OWF, 3OXT, 3P0M, 3P2Z, 3P34, 3P36, 3P37, 3FFQ, 3POA, 3PVB, 3PY3, 3QD2, 3QHR, 3QHW, 3QKK, 3QKL, 3QKM, 3RQ7, 3SDJ