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Protein–protein interactions encode the wiring diagram of

cellular signaling pathways and their deregulations underlie a

variety of diseases, such as cancer. Inhibiting protein–protein

interactions with peptide derivatives is a promising way to

develop new biological and therapeutic tools. Here, we develop

a general framework to computationally handle hundreds of

non-natural amino acid sidechains and predict the effect of

inserting them into peptides or proteins. We first generate all

structural files (pdb and mol2), as well as parameters and

topologies for standard molecular mechanics software

(CHARMM and Gromacs). Accurate predictions of rotamer

probabilities are provided using a novel combined knowledge

and physics based strategy. Non-natural sidechains are useful to

increase peptide ligand binding affinity. Our results obtained on

non-natural mutants of a BCL9 peptide targeting beta-catenin

show very good correlation between predicted and

experimental binding free-energies, indicating that such

predictions can be used to design new inhibitors. Data

generated in this work, as well as PyMOL and UCSF Chimera

plug-ins for user-friendly visualization of non-natural sidechains,

are all available at http://www.swisssidechain.ch. Our results

enable researchers to rapidly and efficiently work with hundreds

of non-natural sidechains.VC 2012 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.22982

Introduction

Protein–protein interactions are fundamental to most biologi-

cal and biochemical processes. However, targeting protein–

protein interactions to develop therapeutics has remained a

significant challenge in recent years.[1] This can be partly

understood by the relatively flat and surface exposed bind-

ing interfaces with distant hotspots that are not very well

suited for standard small molecule high-throughput screen-

ing experiments. Recent experimental advances have pro-

vided an ever-increasing amount of information about pro-

tein–protein interactions, in particular interactions mediated

by short peptides binding to a protein, as often found in sig-

naling pathways.[2] Structural studies have enabled character-

izing a very large number of these complexes.[3] Moreover,

high-throughput techniques, such as peptide arrays,[4]

phage-display,[5] or ribosome-display,[6] reveal unprecedented

insights into binding specificity.[7] However, the use of natu-

ral peptides as inhibitors is often restricted by their sensitiv-

ity to protease-mediated degradation. In addition, several

naturally occurring interactions (either between proteins of

the same organism, or between host and pathogens) have

already been optimized along evolution, suggesting that

peptides restricted to the set of 20 natural amino acids will

hardly be appropriate for inhibiting or competing with these

interactions.

Peptido-mimetics, and especially incorporation of non-natu-

ral sidechains, is a promising strategy to harness the current

wealth of data about natural peptides towards the develop-

ment of more potent inhibitors.[8] Some remarkable experi-

mental advances to genetically encode non-natural side-

chains,[9] such as the use of amber codon,[10] tRNA

acylation,[11] or engineered quadruplet-decoding ribosomes[12]

are currently expanding peptide screening technologies to

include non-natural sidechains. Correct interpretation of these

results at the atomic level requires structural and biochemical

information about these sidechains, such as rotamers. More-

over, as the number of possible non-natural sidechains is

huge, rational structure-based design of non-natural peptides

provides a powerful alternative to high-throughput screen-

ing.[8] As such, computer-aided and modeling strategies are

promising tools to help narrowing-down the list of ligands to

be experimentally tested. In silico approaches are also particu-

larly appropriate for non-natural sidechains insertion, since this

corresponds to a relatively small extrapolation from experi-

mental structural data. In particular, mutating one natural

amino acid to a non-natural one is likely to leave unchanged

the binding mode of the rest of the peptide.

Most existing molecular modeling software, such as FoldX[13]

or TINKER,[14] as well as molecular dynamics (MD) software,

such as Gromacs[15] or CHARMM,[16] only contain a limited set

of amino acid sidechains in addition to the 20 natural ones
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(typically consisting of phosphorylated or methylated residues,

as well as a few others). To bridge this gap and expand the

sidechain chemical alphabet that can be used in molecular

modeling and in silico drug design studies, we built structural

files (mol2, pdb) for 209 non-natural sidechains. Parameter and

topology files to run standard MD simulations with these non-

natural sidechains in CHARMM and Gromacs have been gener-

ated using direct mapping from existing parameters supple-

mented by data retrieved from the SwissParam[18] web service

when necessary. Rotamer probabilities are predicted using a

novel algorithm combining energy calculations with statistical

analysis of experimental data. We show that accurate binding

free-energy predictions can be obtained with our data for

non-natural sidechains. These results are made available at

http://www.swisssidechain.ch and the non-natural sidechains

can be inserted into peptide or protein structures and visual-

ized using our PyMOL and UCSF Chimera[19] plug-ins.

Results and Discussion

Building non-natural sidechains

The chemical alphabet for non-natural amino acid sidechains is

nearly infinite. Here, to maximize the applicability of the results,

we focused on amino acid sidechains with structural informa-

tion in the Protein Data Bank (PDB), as well as commercially

available ones. Non-natural amino acids that modify the back-

bone, such as b-homo, cyclic or aromatic backbones, or proline

derivatives, were not included, since they are more likely to per-

turb the overall conformation of peptides or proteins and are

therefore less amenable to molecular modeling studies. This

resulted in a total of 209 non-natural sidechains, with 141 being

present in the PDB. For the latter, pdb files were downloaded

directly from this database. For the rest we used the tools of

ChemAxon (MarvinSketch) and the UCSF Chimera modeling

software.[19] Mol2 and smiles files were generated with OpenBa-

bel. We next generated parameter and topology files for

CHARMM and Gromacs. For 33% of the sidechains, topology

files, especially partial charges, could be readily generated by

analogy with natural sidechains. Examples of such cases include

for instance allo-threonine, or ornithine (ORN), a shorter lysine,

where partial charges of THR and LYS, respectively, could be

directly mapped. For other sidechains, we used the SwissParam

web service[18] to retrieve both partial charges and missing

force-field parameters (see Material and Methods).

Rotamer predictions

Amino acid sidechains are highly flexible and can adopt sev-

eral different conformations. In practice, it is known that some

conformations are more likely than others. For instance, dihe-

dral angles along carbon chains are known to adopt preferen-

tially values peaked around �60, 60, and 180�, referred to as

rotamers. VAL, for example, has three different rotamers, while

LEU has 3 � 3 since it contains two freely rotating dihedral

angles with three preferred conformations each. The probabil-

ity of each rotamer depends on the nature of the chemical

bonds and interactions with other atoms of the sidechain,

interactions with the backbone of the protein, and interactions

with other atoms found in the vicinity of the sidechain. Back-

bone dependent rotamer libraries capture the former two

aspects by providing rotamer probability distributions for each

value of backbone dihedral angles f and w (typically using a

10� � 10� grid on these angles).[20] Backbone independent

rotamer libraries instead provide rotamer probabilities without

incorporating dependencies on backbone dihedral angles.

Such data are crucial to select conformations that are physi-

cally reasonable when refining experimental structures or

mutating in silico a sidechain.[21,22] For natural sidechains,

rotamers are computed by running statistics on existing

structures in the PDB.[20,23–25] In the absence of sufficient

experimental data for non-natural sidechains, we designed a

novel strategy to predict rotamer probabilities, combining

physical and statistical approaches. We first validate this

strategy on natural sidechains, and then use it to predict

rotamer probabilities of our non-natural sidechains.

Physics-based approach

Rotamer probabilities have often been predicted using molec-

ular mechanics or quantum mechanics calculations.[26–28] Here,

we rely on MD simulations. A tri-alanine peptide was used,

where the second residue is mutated to all other sidechains

(see Material and Methods). Simulations were carried out for a

total of 200ns per sidechain with CHARMM[16] using the FACTS

implicit solvent model.[29] Rotamer probabilities are estimated

as frequencies of conformations corresponding to each

rotamer along the trajectories (see Material and Methods). This

way of computing rotamer probabilities is similar to the way

experimental rotamer probabilities are computed (the only dif-

ference being that the average is done over all existing struc-

tures, rather than over a trajectory). Similar statistics as in Ref.
[23] have been applied to smoothen and extrapolate probabil-

ities to low-sampling regions (see Material and Methods).

To assess the capability of computed rotamer probabilities

to reproduce experimental ones, we first tested our approach

on all natural sidechains (expect ALA, GLY, and PRO). For resi-

dues such as PHE, ILE, LEU, or VAL, good correlations are

obtained between predicted and experimental rotamer proba-

bilities (see Fig. 1, gray bars). However, for many other side-

chains, such as GLU, poor correlations are observed. We also

attempted to predict rotamer probabilities by scanning all pos-

sible values for sidechain and backbone dihedral angles (using

grids of 10� on each dihedral angle) and computing the

energy (see Material and Methods). Using the FACTS solvent

model to estimate energies of these conformations, similar

results are obtained as in the case of MD-based probabilities,

while in vacuo energy calculations give much worse results for

all sidechains (see Supporting Information Fig. S1). It should

also be noted that for long sidechains, energy calculations

tend to become quite expensive. Even for sidechains with only

two dihedral angles, more than a million (364) minimizations

and energy calculations need to be carried out, while for side-

chains such as ARG, this number exceeds 2 � 109 if a 10-

degree grid is defined on each dihedral angle. To investigate
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the effect of the choice of the solvent model we performed

MD simulations with the GBMV2 model[30] for natural side-

chains. Although the latter is 10 times more computationally

demanding, overall, similar results are obtained. The only

exception is for GLU which is better predicted with GBMV2

before renormalization (see below) but similarly after renormal-

ization (see Supporting Information Fig. S2). Because of the

large number of non-natural sidechains to handle, we used

FACTS for the rest of this study.

In general better agreement with experimental data is

observed for hydrophobic sidechains compared to polar side-

chains. This is likely so because polar sidechains are more sensi-

tive to long-range interactions, which are more difficult to accu-

rately sample in simulations or energy calculations. Moreover,

the effect of the solvent is more difficult to reliably estimate for

polar sidechains compared to hydrophobic ones. Overall, it

appears that purely physics-based approaches using either MD

simulations or regular sampling of dihedral angles perform well

on some sidechains, such as VAL or ILE, but fail to accurately

predict other experimentally observed rotamer probabilities.

Knowledge-based approach

To improve on these results, we observed that several proper-

ties of rotamer libraries derived from experimental data are

conserved among different natural amino acid sidechains. First,

similar sidechains have very similar rotamers. This is most strik-

ing when comparing PHE and TYR, where a correlation coeffi-

cient of 0.98 is found between their experimental rotamer

probabilities. Such a high correlation was never obtained

between our calculations and the experimental rotamers, nei-

ther for PHE nor for TYR (see Fig. 1, gray bars). This observa-

tion suggests that simple derivatives of PHE are better pre-

dicted by mapping the rotamers of PHE, rather than trying to

compute them from MD simulations or energy calculations.

Less expectedly, we also found a remarkable conservation

among the experimental probabilities Pexp(r1) of the rotameric

state of the first dihedral angle v1 for all sidechains starting

with a linear three-carbon chain Ca-Cb-Cc aside from ASP and

ASN (i.e, ARG, GLN, GLU, HIS, LEU, LYS, MET, PHE, TYR, TRP),

and for CYS (see Fig. 2A). For instance, the average correlation

coefficient of Pexp(r1) between these 11 sidechains is 0.85 in

backbone dependent rotamer libraries. Similar results are

obtained for backbone independent rotamer libraries (Fig. 2B).

Moreover, the rotamer probabilities Pexp (r1, r2) for the rota-

meric state of v1 and v2 are very well conserved for longer

sidechains (ARG, GLN, GLU, LYS and MET), as shown in Figures

2C and 2D. These observations indicate that Pexp(r1) or Pexp (r1,

r2) are conserved between many different sidechains and

could be used to help computing rotamer probabilities of new

sidechains. In this work, we use the average of Pexp(r1) over

ARG, CYS, GLU, GLN, HIS, LEU, LYS, MET, PHE, TYR, and TRP

(referred to as Pav(r1)) and we renormalize with this quantity

the rotamer probabilities computed along MD trajectories for

sidechains starting with a linear chain of three carbon or sulfur

atoms (see Materials and Methods). For instance, for a side-

chain with two flexible dihedral angles, the final probability is

computed as Pfinal(r1, r2) ¼ Pav(r1) P(r1, r2)/P(r1), where P(r1, r2)

is the probability of the rotameric state of the two dihedral

angles based on MD simulations and P(r1) is the probability of

the rotameric state of first dihedral angle in the MD simula-

tion. Similarly, we used the average of Pexp(r1, r2) over ARG,

GLU, GLN, LYS and MET (referred to as Pav(r1, r2)) to renormal-

ize the computed rotamer probabilities of sidechains starting

with a linear chain of four carbon or sulfur atoms. The cross-

validation analysis (see Material and Methods) of Figure 1

(dark bars) shows a very clear improvement after renormaliza-

tion. For all natural sidechains without branching at Cb (and

excluding SER as well) the renormalized rotamer probabilities

correlate better with experimental ones (average correlation

coefficient increasing from 0.49 to 0.72). Reversely, for most

sidechains that do not start with a linear chain of three carbon

or sulfur atoms, and especially for the ones with a branching

at Cb (ILE, THR, VAL), renormalizing rotamer probabilities leads

to very poor correlations with experimental data (Fig. 1). Simi-

lar results are obtained for backbone independent rotamer

predictions (Supporting Information Fig. S3) or when focusing

only on (f, w) dihedral angles corresponding to alpha helices

or beta strands (Supporting Information Fig. S4).

This enables us to define renormalization criteria that are

summarized in Figure 3. First, for simple derivatives of natural

sidechains without additional dihedral angles, Pexp(r1, …rn) of

the corresponding natural sidechain can be simply mapped.

Second, for derivatives of natural sidechains with additional di-

hedral angles (e.g., 2-amino-4-ethyl sulfanyl butyric acid) the

dihedral angles shared with the natural sidechain are renor-

malized by rotamer probabilities of the corresponding natural

sidechain. Third, rotamer probabilities of sidechains starting

with a linear chain Ca-Cb-Cc/Sc are renormalized by Pav(r1).

Fourth, rotamer probabilities of sidechains starting with a lin-

ear chain Ca-Cb-Cc-Cd/Sd are renormalized by Pav(r1, r2).

Figure 1. Cross-validation analysis of rotamer predictions. The gray bars

show the correlation between experimental and predicted rotamer proba-

bilities using MD simulations. Dark bars show the correlation between ex-

perimental and predicted rotamers after renormalization of the first

dihedral angles. * indicates sidechains satisfying the first dihedral angle

renormalization criterion. ** indicates sidechains satisfying the first two di-

hedral angles renormalization criterion.
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We note that some of the discrepancies between rotamer

probabilities of natural sidechains computed from MD simula-

tions or energy calculations and experimental ones might be

explained by biases in X-ray structures due to secondary struc-

ture elements. For instance, alpha-helices are known to create

restraints on some sidechain conformations compared to small

unstructured peptides.[27] We do not exclude that one of the

effects of the renormalization scheme is to introduce some of

these biases into our computed rotamer probabilities. As our

goal is not to extensively analyze the conformational space of

free sidechains on model systems such di- or tri-alanine, but

rather to provide accurate estimates of the most likely confor-

mations in the context of proteins, incorporating these biases

proves to be a useful feature.

A more fine-grained version of natural sidechain rotamer

libraries was recently released.[25] We observe similar cross-val-

idation performance of our predictions for natural sidechains

with this library (see Supporting Information Fig. S5). How-

ever the additional details of this new library give rise to a

much larger number of parameters that need to be inferred,

resulting in higher risks of inaccuracies when predicting

rotamer probabilities. In addition, this generates several Giga-

bytes of data that become hardly tractable for standard visu-

alization tools such as PyMOL or UCSF Chimera[19] when deal-

ing with hundreds of sidechains. For this reason, we focused

on the 2002 version of the Dunbrack rotamer library, which is

also the most widely used in visualization and modeling

software.

Figure 2. Conservation of the first dihedral angle distribution in natural sidechains. a) and b): heatmap of correlation coefficients between experimental

rotamer probabilities Pexp(r1) of the first dihedral angle for natural sidechains, both for backbone dependent a) and backbone independent b) rotamer

libraries. c) and d): heatmap of correlation coefficients between rotamer probabilities Pexp(r1, r2) of the first two dihedral angles for the seven sidechains

with dihedral angles v1 and v2 of the same type (i.e., with three main energy minima at �60, 60, and 180).
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Rotamer predictions for non-natural sidechains

We used the combined physics and knowledge-based strategy

to predict the rotamer probabilities of all 209 non-natural side-

chains studied in this work. For simple derivatives of natural

sidechains, such as hydroxy-tryptophan or chloro-phenylala-

nine, without any additional free dihedral angle, we simply

mapped the rotamer probabilities of the corresponding natural

sidechains (see Material and Methods). In total, rotamer proba-

bilities could be mapped in this way for more than one third

of the non-natural sidechains studied in this work (see Sup-

porting Information Table S1). All other non-natural sidechains

were inserted into a tri-alanine peptide with neutral termini

and subjected to a total of 200ns MD simulations each. For

sidechains satisfying our renormalization criteria (see Support-

ing Information Fig. 3 and Table S1), the computed rotamer

probabilities were then renormalized as described above.

To validate our predictions for non-natural sidechains, we

compared the predicted rotamers to structural data available

for non-natural sidechains in the PDB. First, for each occurrence

of non-natural sidechains in experimental X-ray structures, we

retrieved its rotamer and computed the rank of this rotamer

based on our backbone dependent predicted probabilities

(backbone independent rotamer libraries where used for N- or

C-terminal amino acids). Ranks were normalized between 0

and 1, and the distribution of ranks was computed over the

whole PDB. Figure 4 shows that the vast majority of experi-

mental conformations correspond to rotamers with high ranks

(p < 10�15, one-sided t-test). For instance, 27% of the non-nat-

ural sidechains in these structural data adopt a conformation

corresponding to the best predicted rotamer and 85% of them

adopt a conformation ranking among the top 50% of the pre-

dicted rotamers.

Second, we predicted in silico the experimental conforma-

tion of these sidechains in the context of the protein crystal

structure. Toward this goal we used our UCSF Chimera plug-in.

Each occurrence of a non-natural sidechain in a crystal struc-

ture of the PDB (see Supporting Information Table S4 for the

Figure 3. Decision diagram for renormalizing rotamer probabilities. For each possible output, an example of non-natural sidechain is displayed for illustra-

tion with its full name and the PDB code in parentheses. The first 2D structure recalls how dihedral angles are defined. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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complete list of structures) was mutated to itself and the pre-

dicted conformation was automatically generated with the

USCF Chimera[19] software in the same way as for natural side-

chains. The test was conducted for 3381 occurences of 111

non-natural sidechains in 1440 different protein structures.

There, conformations were selected according to the following

default criteria of UCSF chimera (in this order): lowest number

of clashes, highest number of H-bonds and highest rotamer

probability. Longer sidechains are notoriously more difficult to

predict than shorter ones, due to the large number of degrees

of freedom.[22] To quantify the accuracy of the predictions, we

computed for each non-natural sidechain with experimental

structural data the fraction of correctly predicted rotameric

state up the ith dihedral angle (Ni). For instance, N2 for ORN

stands for the fraction of ORN residues for which the rotameric

state of the first two dihedral angles was correctly predicted.

The final score is defined as S ¼ 1
C

PC
i¼1 Ni (see Ref. [22] for a

related approach), where C stands for the total number of free

dihedral angles considered to define rotamers. Table 1 shows

the average of the S score and Ni values over all non-natural

sidechains with the same number of dihedral angles (the raw

data for each non-natural sidechain can be found in Support-

ing Information Table S4). Despite the relatively simple

approach used here to place the sidechains, compared to

more advanced algorithms such as SCWRL4,[22] we obtain a

reasonable degree of accuracy. For instance, more than half of

the sidechains with two dihedral angles could be accurately

placed (see Table 1), although most of them have between six

and nine different possible rotameric states.

We also attempted to compare our results with the very few

publicly available data for rotamer libraries of non-natural side-

chains. The latest release of Rosetta[17] (release 3.3) currently

includes rotamers for Norvaline (NVA) and Homoleucine. Suffi-

cient structural data are only available for the first one, so we

used the rotamers provided in Rosetta with the selection pro-

tocol of UCSF Chimera to predict the conformation of NVA.

Slightly better results were obtained with our rotamer library

(S ¼ 0.85 with our data and S ¼ 0.77 with the rotamer library

provided in Rosetta), although the limited testing set (13

occurrences in nine structures) does not allow us to draw gen-

eral conclusions. Moreover, when directly comparing the two

rotamer libraries, a correlation coefficients of 0.65 is obtained

for the rotamer probabilities over all f and w angles. This cor-

relation rises to 0.8 when restricting the comparison to alpha-

helix and beta-sheet regions of the Ramachandran (see Materi-

als and Methods).

These results confirm that our predicted rotamers corre-

spond to reasonable values and can be used to accurately

explore in silico the different conformations of non-natural

sidechains.

Binding free-energy estimation for non-natural sidechains

We next tested the ability of our non-natural sidechains

parameterization to correctly reproduce experimentally meas-

ured binding free energy differences. As a benchmark, we

used a recent study by Kawamoto et al.[31] of the interaction

between BCL9 and beta-catenin, where 12 mutants with non-

natural sidechains have been tested (Table 2). BCL9 is known

to bind beta-catenin on a different binding site than the one

targeted by E-cadherin or TCF4, and this interaction is critical

for beta-catenin transcriptional activity. Using the crystal struc-

ture of the complex between beta-catenin and a peptide

derived from BLC9[32] (PDB code: 2GL7), we computationally

inserted the mutations tested in Ref. [31] with the help of our

PyMOL plug-in. We then estimated binding free energy differ-

ences between wild-type and mutants with the MM-GBSA

algorithm[33] starting from different rotamers (see Material and

Methods). Our results display a good correlation between pre-

dicted and experimental binding free energies (r ¼ 0.75 when

considering only the rotamer giving lowest predicted binding

free-energy and r ¼ 0.78 when averaging over all rotamers,

see Fig. 5A and Table 2). This correlation is similar to the typi-

cal values obtained when estimating binding free-energies of

natural amino acid mutants.[33] In particular, the best mutation,

corresponding to PHE374 mutated to 2-Naphthalene (NAL), is

correctly predicted (residue numbering follows the one in the

PDB structure 2GL7). Simple mutation of this residue to NAL

without allowing structural rearrangements generated some

minor clashes with the backbone carbonyl group of GLN177.

However, along the simulation, these residues rapidly find new

conformations that resolve all clashes, without affecting any of

the other important interactions. The corresponding predicted

binding mode is displayed in Figure 5B. The increase in affinity

can be understood by the additional hydrophobic contacts of

the sidechain of NAL compared to the wild-type

Figure 4. Rotamer distribution in existing structural data of non-natural

sidechains. The probability and the corresponding rank of each experimen-

tal structural conformation of all non-natural sidechains was computed

based on the predicted backbone dependent rotamer probabilities. The

histogram shows the distribution of normalized ranks for these experimen-

tal structures. Clearly, experimental structures are given a high rank, corre-

sponding to a good probability, in our predicted rotamer libraries.
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phenylalanine. Beta-catenin – BCL9 interaction further provides

an interesting example of the use of non-natural sidechains,

since none of the 50 experimentally tested mutations to natu-

ral sidechains significantly improved binding affinity.[31] More-

over, the sequence of BCL9 peptide, and especially residues on

the binding interface, is well conserved in distant organ-

isms.[32] This suggests that the wild-type is already quite opti-

mized and only incorporation of novel chemical building

blocks, here non-natural sidechains, could offer room for affin-

ity improvement.

Conclusion

Expanding structural and molecular modeling tools to non-nat-

ural sidechains is key both to interpret experimental data with

these sidechains, as well as to make de novo structure-based

predictions. Our work aims to fill the existing lack of computa-

tional tools that enable representing and analyzing non-natu-

ral sidechains incorporated into peptides or proteins.

To explore the dynamical aspects of non-natural sidechains,

we have generated parameters for CHARMM and Gromacs

modeling software. Since non-natural sidechains are mostly

used to insert them into existing polypeptide chains, we tried

as much as possible to directly infer topologies and parame-

ters from the CHARMM protein force field to maximize com-

patibility with the rest of the protein. For the remaining pa-

rameters, we used the SwissParam web service[18] that is

based on MMFF force field.[34] As such, we stress that our data

are mostly designed first for visual inspection of non-natural

sidechain mutants, including most favorable rotamers, as well

as short simulations used for instance to better sample the

structural environment when estimating binding free-energy

differences. This kind of parameterization was previously

shown to provide accurate results with small-molecules in

complex with proteins.[18] More extensive simulations, such as

analyzing the folding of polypeptides, might be more sensitive

to the choices of parameters. Thus, we cannot exclude that in

some of these cases combining parameters from the CHARMM

force field together with MMFF might prove less accurate.

Nevertheless, our results on beta-catenin—BCL9 interaction

show that accurate binding free-energy predictions can be

achieved and that the results of such calculations can be use-

ful to structurally interpret experimental data.

Our novel strategy to predict rotamer probabilities combin-

ing physics-based and knowledge-based analysis enabled us

to generate rotamer libraries for non-natural sidechains that

can be used by standard visualization tools. Our method is

computationally very efficient compared with more detailed

energy calculations,[27,28] and therefore allowed us to predict

rotamer probabilities for hundreds of non-natural sidechains.

Moreover, it is particularly appealing for long sidechains, which

mostly benefit from the renormalization scheme and are more

difficult to handle with purely physics-based approaches due

to the large number of degrees of freedom. To enable

user-friendly visualization of these new sidechains, we have

developed plug-ins for PyMOL and USCF Chimera that can be

Table 1. Evaluation of correctly placed non-natural sidechains in X-ray data.

Number of free

dihedral angles

Number of

non-natural sidechains

Total number of

occurences in X-ray data <S> <N1> <N2> <N3> <N4>

1 9 295 0.417 0.417

2 60 593 0.717 0.865 0.568

3 25 1825 0.548 0.82 0.482 0.341

4 17 668 0.464 0.775 0.611 0.298 0.172

The averages are done over all sidechains with a given number of dihedral angles (the total number of such sidechains is indicated in column 2). Col-

umn 3 shows the total number of mutations tested in this work. Raw data for each sidechain can be found in Supporting Information Table S4.

Table 2. List of all BCL9 non-natural mutants plotted in Figure 5.

Mutants Name Ki[lM]

RT*ln(Ki/Kiwt)

[kcal/mol]

Predicted DDG [kcal/mol]

(rotamer with lowest energy)

Predicted DDG [kcal/mol]

(Boltzmann average

over all rotamers)

Wild-type 28.8 0 0 0.00

L366HLEU Homoleucine 259 1.31 2.64 4.43

L366NLE Norleucine 180 1.09 2.65 4.57

L366BUG Tertleucine 400 1.57 15.64 15.64

I369HLEU Homoleucine 20 �0.22 1.84 3.61

I369NLE Norleucine 44 0.25 1.14 3.08

I369BUG Tertleucine 122 0.86 7.88 7.88

L373HLEU Homoleucine 66 0.49 0.11 2.05

L373NLE Norleucine 88 0.67 0.03 1.91

L373BUG Tertleucine 133 0.91 7 7.00

F374HPE Homophenyl-alanine 54 0.37 0.88 2.27

F374ALN 1-naphthyl-alanine 16.8 �0.32 �0.79 0.67

F374NAL 2-naphthyl-alanine 8.41 �0.73 �4.21 �2.74

Ki values correspond to the affinities measured in Ref. [31]. Positions are numbered according to the PDB structure 2GL7.

[Corrections made here after initial online publication.]
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downloaded at http://www.swisssidechain.ch. In particular,

users can toggle between different rotamers to evaluate the

most favorable ones and minimize steric clashes.

In addition to increasing binding affinity, non-natural side-

chains may also help preventing degradation by allowing pep-

tides to escape residue-specific proteases. Other powerful

ways of making peptides more resistant to protease degrada-

tion consist for instance in incorporating D-amino acids. Apart

from rotamer probability predictions, topologies and parame-

ters generated in this work can be readily transferred to D-

enantiomers. In particular, binding free-energy can be com-

puted in the same way as we did for BCL9 mutants. Further-

more, current technologies enable screening large random

libraries of cyclic[35] or bi-cyclic peptides[36] with natural side-

chains that are highly resistant to proteolytic degradation.

Insertion of non-natural sidechains into these ligands is a

promising way to affinity mature them, for which structure-

based methods relying on the data generated in this work

would be particularly well suited.

Material and Methods

Building structural files

Considering all non-natural sidechains present in the PDB

database, as well as a several others that are commercially

available, pdb and mol2 files were generated for a total of 209

sidechains. Three-letter code of the PDB was used when avail-

able. Otherwise a four-letter code was chosen such as to pro-

vide an intuitive abbreviation of the sidechain full name. Atom

names were chosen according to the Greek alphabet order

Ca-Cb-Cc-... Here again we tried to follow as much as possible

the atom names used in the PDB. However, some of them had

to be renamed for consistency, especially the ones that did

not use standard names for backbone atoms. Unless specified,

the protonated form corre-

sponds to pH ¼ 7. All amino

acids are provided in their L-

form.

Generating topologies and

parameters

Parameters and topologies for

CHARMM and Gromacs (using

the CHARMM22 protein force-

field[37]) are provided for all

non-natural sidechains. Since

our main goal when modeling

non-natural sidechains is to

probe in silico their insertion

into natural peptides or pro-

teins, we tried to be as close

as possible to the existing

CHARMM force field for natu-

ral amino acids. For sidechains

similar to natural ones (e.g.,

ORN) topology files were manually built by similarity with

existing ones. For other sidechains we used the SwissParam

web service[18] that provides topologies for any organic mole-

cule based on MMFF.[34] In all cases, only chemical groups

without analogs among existing sidechains, as well as immedi-

ately neighboring atoms, were given partial charges derived

from SwissParam. For instance, backbone atoms were always

parameterized in the same way as natural amino acids in the

CHARMM force field. Moreover, hydrogen atoms within ACH,

ACH2, or ACH3 groups were always given a charge of 0.09

and the carbon charges were updated accordingly to maxi-

mize compatibility with the original CHARMM force field. For

34% of the sidechains, new atom types had to be defined, ei-

ther when the atom itself did not exist in CHARMM22 (e.g., io-

dine or bromine), or when the atom was part of an uncharac-

terized chemical group (e.g., sulfur atoms within aromatic

rings). Force-field parameters required to describe some non-

natural sidechains (i.e., force constants and equilibrium values

for bonds, angles, etc…) and not present in CHARMM were

also retrieved from the SwissParam web service, as well as the

list of internal coordinates for CHARMM topology files. For sim-

ulations in Gromacs, hydrogen database files have also been

generated.

Rotamer definitions

Rotamers were defined considering all flexible dihedral angles

along the sidechains (see Supporting Information Table S1).

Both backbone dependent and backbone independent

rotamers are considered. For backbone dependent rotamers, a

10� � 10� grid was defined on the (f, w) plane, resulting in a

total of 36 � 36 ¼ 1296 bins. Similar bins on dihedral angles

were used as in the Dunbrack 2002 rotamer library[20] to

define the rotamers on natural sidechains (see Supporting In-

formation Table S2). For instance all sidechains starting with a

linear chain Ca-Cb-Cc have three bins on the first dihedral

Figure 5. a) Binding free energy predictions for BCL9 non-natural mutants interacting with beta-catenin. DDG
predicted with the MM-GBSA algorithm[33] for the 12 non-natural mutants studied in Ref. [31] are compared with

their experimentally measured DDG. Black stars indicate the results for the rotamer with the lowest predicted

binding free energy. Green circles show the Boltzmann average over all rotamers. The arrow indicates that only the

lower bound for experimental binding affinity was measured. b) Snapshot of the stable conformation reached in

the simulation for PHE374NAL mutant.

FULL PAPER WWW.C-CHEM.ORG

1532 Journal of Computational Chemistry 2012, 33, 1525–1535 WWW.CHEMISTRYVIEWS.COM



angle v1 (r1 ¼ 1 if 0 � v1 < 120, 2 if 120 � v1 < 240, and 3 if

�120 � v1 < 0). For some non-natural sidechains (e.g., asym-

metric phenylalanine derivatives such as 3-methyl-phenylala-

nine, PDB code: APD), additional or different bins had to be

included (see Supporting Information Tables S1 and S2 for the

full list of bins of each kind of dihedral angles). Rotamer prob-

abilities are denoted by P(r1,…rn) where ri stands for the differ-

ent bins on the ith dihedral angle and n for the total number of

freely rotating dihedral angles used in the rotamer definition.

For clarity, we do not explicitly write the backbone (f, w)
dependences. When considering rotamer probability for the

first dihedral angle v1, P(r1) stands for
P

fr2g :::
P
frng

Pðr1; r2; :::; rnÞ.
Similarly P(r1, r2) stands for

P
fr2g :::

P
frng Pðr1; r2; :::; rnÞ.

Pexp(r1,…rn) stands for experimental probabilities retrieved

from the Dunbrack 2002 rotamer library.[20] Recently, a new

version of the Dunbrack rotamer library was published[25] that

includes several additional bins on some non-rotameric

dihedral angles (e.g., c2 of ASN and ASP). When comparing

our predictions for natural sidechains to this new library

(Supporting Information Fig. S5) the same new bin definitions,

including v1 dependencies on some dihedral angle bins, were

used as in Ref. [25].

Rotamer predictions

Our rotamer predictions rely on a combined physics-based

(using MD simulation to infer rotamer probabilities) and

knowledge-based (exploiting conserved features of experimen-

tally determined rotamer libraries) strategy.

Physics-based approach

To infer rotamer probabilities from molecular calculations, we

used MD trajectories and evaluated the probability of each

rotamer along the trajectories. Simulations were carried out on

a tri-alanine peptide where the residue in the middle was

mutated to each non-natural sidechain analyzed in this work.

The N-terminal was acetylated and the C-terminal was ami-

dated to prevent spurious interactions with or between

charged termini along the simulation. Fifty-nanosecond second

simulations were run at 300 K with CHARMM using the FACTS

solvent model[29] and starting from four different (f, w) confor-
mations corresponding to the main energy basins of the rama-

chandran plot ((�139, 135), (�70, �27), (60, 40), and (60,

�150)). Snapshots were recorded every picosecond and

rotamer frequencies were computed as the frequency of ob-

servation along the trajectory in each bin of each dihedral

angle defining the different rotamers. A similar smoothing

based on Bayesian statistics with Dirichlet priors as in Ref. [23]

was applied to these frequencies to allow for a fair comparison

with rotamer probabilities derived from experimental struc-

tures. The average dihedral angles for each rotamer were also

estimated from the dihedral angles along MD trajectories,

using Bayesian statistics with Gaussian priors as in Ref. [23].

Alternate strategies have been used to predict rotamers,

such as computationally scanning conformations of free dihe-

dral angles and evaluating their energies.[27] To compare with

these approaches we used the CHARMM software to evaluate

energies of sidechain conformations for all natural sidechains

(excluding ALA, GLY, and PRO). Starting from a minimized

structure (5000 steps of steepest descent), backbone (f, w) as
well as sidechain dihedral angles were then restrained to given

values by adding constraints of 5000 kcal/mol/� on dihedral

angles. Structures were subsequently minimized with 100

steps of steepest descent and the total energy was evaluated,

not including the contribution due to the artificial constraints.

Bins of 10 degrees were used on f and w as well as on side-

chain dihedral angles. To prevent excessive computations, the

v1 dihedral angle was only sampled at (�60, 60, 180) for GLN,

GLU, MET, and the v1, v2 angles were sampled at (�60, 60,

180) for ARG and LYS. Energy calculations were done both in

vacuo (e ¼ 1) and with the FACTS solvent model (eint ¼ 1, esolv
¼ 80). Probabilities were derived from energies using Boltz-

mann statistics Pðr1; ; :::; rnÞ ¼ 1
Z

P
c2Sðr1;:::;rnÞ expð�EðcÞ=kTÞ,

where S(r1,…,rn) stands for the ensemble of conformations

with rotamer (r1,…,rn), E(c) for the energy of a particular con-

formation, and Z for the appropriate normalizing factors. For

backbone dependent rotamers, Z corresponds to a sum over

all conformations with given (f, w), while for backbone inde-

pendent it includes all possible conformations. Comparison

between MD-based and energy-based rotamer predictions can

be found in Supporting Information Figure S1.

Knowledge-based approach

The main idea of this approach is to make use of the remark-

able degree of conservation of the first dihedral angle rotamer

distributions among sidechains starting with a linear chain of

carbon atoms (see Fig. 2). For sidechains satisfying the v1
renormalization criterion (see Supporting Information Table S1

and Result section), the probabilities P(r1,…, rn) computed

with CHARMM are renormalized by the experimental averaged

probability distribution Pav(r1), as defined in the main text. For

instance, if P(r1, r2) describes the computed rotamer probabil-

ity for a sidechain with two degrees of freedom that satisfy

the v1 renormalization criterion, the final rotamer probability is

given by Pfinal(r1, r2) ¼ Pav(r1)P(r1, r2)/ P(r1). For simple deriva-

tives of natural sidechains that contain additional dihedral

angles (e.g., methionine derivative 2-amino-4-ethyl sulfanyl bu-

tyric acid in Fig. 3), the first dihedral angles (v1, v2, and v3 in

this example) were renormalized with the rotamer probabilities

of the corresponding natural sidechain. We note that for para-

substituents of PHE, the bins on v2 were chosen such as to

consider the introduced asymmetry (see Supporting Informa-

tion Table S2) and the experimental rotamer probabilities of

PHE were divided by 2 before distributing them between the

symmetric bins. Moreover, for ortho- substituents on PHE or

TRP, the v1 renormalization scheme was used, rather than a

direct mapping, since the substituents are likely to have a

stronger effect on v2.

Comparing rotamer probabilities

To compare rotamer probabilities (either experimental proba-

bilities among different sidechains, or experimental versus
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predicted probabilities), we used the correlation coefficient

between all rotamer probabilities. This measure is especially

appropriate because it is not too sensitive to small variations

among very low probabilities, which are often less meaningful.

When comparing with experimental rotamer probabilities, we

restrict our analysis to (f, w) bins with at least 10 experimental

data points in the rotamer library of Ref. [20], to avoid biasing

the results because of the low coverage and smoothing

applied to the data. Supporting Information Figure S4 shows

the results of the cross-validation study for (f, w) bins corre-

sponding to alpha helices or beta sheets (i.e., �70 � f � �40

and �50 � w � �20, or �160 � f � �110 and 110 � w �
160).

Cross-validation

For cross-validation of the knowledge-based approach, we did

not include Pexp(r1) of the corresponding sidechain in the aver-

age experimental distribution Pav(r1) used to renormalize the

computed probabilities. For instance, when renormalizing the

computed P(r1, r2) for LEU, we used the average probability

distribution Pav(r1) over ARG, CYS, GLN, GLU, HIS, LYS, MET,

PHE, TYR and TRP, excluding experimental data for LEU. Simi-

larly, we excluded Pexp(r1, r2) of the sidechain under considera-

tion from Pav(r1, r2) when renormalizing P(r1, r2, r3) for MET,

GLU and GLN, as well as P(r1, r2, r3, r4) for ARG and LYS.

Binding free-energy predictions

Twelve mutants of a BCL9 peptide involving non-natural side-

chains were studied in Ref. [31] and binding affinity for beta-

catenin was measured for all of them. The mutants were

structurally modeled with our PyMOL plug-in, starting from

the X-ray structure of BCL9 bound to beta-catenin[32] (PDB:

2GL7). For each mutant, we used all rotamers except the ones

corresponding to very big clashes. To estimate binding free-

energy, we used the method of Ref. [33]. Structures were first

subjected to 500 steps of steepest descent minimization in

Gromacs. MD simulations were then run for 1ns in Gromacs

with the CHARMM22 force-field[38] supplemented by our

newly derived parameters, and frames were extract every

10ps. Binding free-energy (DG) of the complex for each frame

was estimated using the MM-GBSA algorithm[33] and results

were averaged over all 100 frames for each mutant and for

the wild-type. Only contributions from residues directly on the

binding interface were considered. The final DDG predictions

correspond to the binding free-energy differences between

the wild-type and each mutant. For the average over

all rotamers, we used Boltzmann weights according to the

following formula:

DDGfinal ¼ �RT ln
1

C

XC

i¼1

exp
�DDGi

RT

8
>:

9
>;

8
>>>:

9
>>>;;

where C stands for the total number of rotamers (rotamers

excluded because of large clashes are assumed to have a very

large DDG and not to contribute to the sum of exponentials).
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